首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Changes in nutrient concentrations of leaves and roots in response to global change factors
Authors:Jordi Sardans  Oriol Grau  Han Y H Chen  Ivan A Janssens  Philippe Ciais  Shilong Piao  Josep Peñuelas
Institution:1. CSIC, Global Ecology Unit CREAF‐CEAB‐UAB, Barcelona, Spain;2. CREAF, Barcelona, Spain;3. Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada;4. Research Group of Plant and Vegetation Ecology (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium;5. Laboratoire des Sciences du Climat et de l'Environnement, IPSL, Gif‐sur‐Yvette, France;6. Sino‐French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
Abstract:Global change impacts on biogeochemical cycles have been widely studied, but our understanding of whether the responses of plant elemental composition to global change drivers differ between above‐ and belowground plant organs remains incomplete. We conducted a meta‐analysis of 201 reports including 1,687 observations of studies that have analyzed simultaneously N and P concentrations changes in leaves and roots in the same plants in response to drought, elevated CO2], and N and P fertilization around the world, and contrasted the results within those obtained with a general database (838 reports and 14,772 observations) that analyzed the changes in N and P concentrations in leaves and/or roots of plants submitted to the commented global change drivers. At global level, elevated CO2] decreased N concentrations in leaves and roots and decreased N:P ratio in roots but no in leaves, but was not related to P concentration changes. However, the response differed among vegetation types. In temperate forests, elevated CO2] was related with lower N concentrations in leaves but not in roots, whereas in crops, the contrary patterns were observed. Elevated CO2] decreased N concentrations in leaves and roots in tundra plants, whereas not clear relationships were observed in temperate grasslands. However, when elevated CO2] and N fertilization coincided, leaves had lower N concentrations, whereas root had higher N concentrations suggesting that more nutrients will be allocated to roots to improve uptake of the soil resources not directly provided by the global change drivers. N fertilization and drought increased foliar and root N concentrations while the effects on P concentrations were less clear. The changes in N and P allocation to leaves and root, especially those occurring in opposite direction between them have the capacity to differentially affect above‐ and belowground ecosystem functions, such as litter mineralization and above‐ and belowground food webs.
Keywords:   CO   2     drought  ecological stoichiometry  N deposition  N:P  nitrogen  phosphorus
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号