首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of media composition on submerged culture spores of the entomopathogenic fungus, Metarhizium anisopliae var. acridum, Part 1: Comparison of cell wall characteristics and drying stability among three spore types
Authors:Jarrod E. Leland   Donald E. Mullins  Larry J. Vaughan  Herman L. Warren
Affiliation: a US Department of Agriculture, Agricultural Research Service, Southern Insect Management Research Unit, Stoneville, MS, USAb Office of International Research, Education, and Development, Virginia Polytechnic Institute and State University, Blacksburg, VA, USAc Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
Abstract:Metarhizium anisopliae var. acridum (IMI 330189) can produce at least three spore types in vitro; blastospores, submerged conidia, and aerial conidia, as defined by culturing conditions, sporogenesis, and spore morphology. This study compares morphological characteristics (dimensions and cell wall structure), chemical properties of cell wall surfaces (charge, hydrophobicity, and lectin binding), and performance (germination rate and drying stability) among these three spore types. Submerged conidia and aerial conidia both possessed thick, double-layered cell walls, with hydrophobic regions on their surfaces. However, in contrast to aerial conidia, submerged conidia have: (1) a greater affinity for the lectin concanavalin-A; (2) more anionic net surface charge; and (3) a less distinct outer rodlet layer. Blastospores were longer and more variable in length than both submerged conidia and aerial conidia, and had thinner single-layered cell walls that lacked an outer rodlet layer. Also, blastospores had a greater affinity than either conidia type for the lectin, wheat germ agglutinin. Blastaspores lacked hydrophobic regions on their surface, and had a lower anionic net surface charge than submerged conidia. In culture, blastospores germinated the fastest followed by submerged conidia, and then aerial conidia. Survival of submerged conidia and aerial conidia were similar after drying on silica gel, and was greater than that for blastospores. We provide corroborating information for differentiating spore types previously based on method of production, sporogenesis, and appearance of spores. These physical characteristics may have practical application for predicting spore-performance characteristics relevant to production and efficacy of mycoinsecticides.
Keywords:Metarhizium anisopliae  conidia  blastospores  media  cell wall  mycoinsecticide  biocontrol
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号