首页 | 本学科首页   官方微博 | 高级检索  
     


High‐throughput respiration screening of single mitochondrial substrates using permeabilized CHO cells highlights control of mitochondria metabolism
Authors:Judith Wahrheit  Saskia Sperber  Elmar Heinzle
Affiliation:Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
Abstract:Respiration analysis using isolated mitochondria and electrochemical oxygen sensing has contributed significantly to the knowledge about mitochondrial metabolism, which is involved in energy generation but also in ageing and numerous diseases. Here, we present a high‐throughput respiration screening for functional in situ mitochondrial studies in permeabilized Chinese hamster ovary cells. The determination of oxygen uptake rates allowed a quantitative comparison between different conditions and a distinction of substrates into three groups providing an insight into tricarboxylic acid (TCA) cycle regulation. The mitochondrial metabolization of citrate, isocitrate, glutamine, and glutamate was highly stimulated by ADP supply. In contrast, the metabolization of α‐ketoglutarate, succinate, fumarate, and malate was little controlled by the energy and redox state. Metabolization of pyruvate was very strictly regulated by several independent mechanisms: phosphorylation, feedback inhibition, but also by the availability of CoA. A moderate stimulation of pyruvate metabolization was accomplished by feeding both pyruvate and aspartate simultaneously. The presented high‐throughput respiration screening provides comprehensive information about the effect of single or mixed substrates on mitochondrial metabolic activities, including transport and TCA cycle regulation, and metabolic bottlenecks. This supports the design of efficient mammalian producer strains or feeding strategies, but also the investigation of pathological and toxicological effects related to mitochondrial metabolism.
Keywords:Mammalian metabolism  Mitochondria  Permeabilized cells  Respiration  Tricarboxylic acid cycle
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号