首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanisms of vanadate-induced cellular toxicity: role of cellular glutathione and NADPH
Authors:Capella Luiz S  Gefé Maria R  Silva Edson F  Affonso-Mitidieri Ottilia  Lopes Anibal G  Rumjanek Vivian M  Capella Márcia A M
Institution:Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
Abstract:Increased production of reactive oxygen species (ROS) by the mitochondrion has been implicated in the pathogenesis of numerous liver diseases. However, the exact sites of ROS production within liver mitochondria and the electron transport chain are still uncertain. To determine the sites of ROS generation in liver mitochondria we evaluated the ability of a variety of mitochondrial respiratory inhibitors to alter the steady state levels of ROS generated within the intact hepatocyte and in isolated mitochondria. Treatment with myxothiazol alone at concentrations that significantly inhibit respiration dramatically increased the steady-state levels of ROS in hepatocytes. Similar results were also observed in isolated mitochondria oxidizing succinate. Coincubation with antimycin or rotenone had no effect on myxothiazol-induced ROS levels. Myxothiazol stimulation of ROS was mitochondrial in origin as demonstrated by the colocalization of MitoTracker Red and dichlorofluorescein staining using confocal microscopy. Furthermore, diphenyliodonium, an inhibitor that blocks electron flow through the flavin mononucleotide of mitochondrial complex I and other flavoenzymes, significantly attenuated the myxothiazol-induced increase in hepatocyte ROS levels. Together, these data suggest that in addition to the ubiquinone-cytochrome bc(1) complex of complex III, several of the flavin-containing enzymes or iron-sulfur centers within the mitochondrial electron transport chain should also be considered sites of superoxide generation in liver mitochondria.
Keywords:Mitochondria  Hepatocytes  Liver  Reactive oxygen species  Myxothiazol  Confocal microscopy
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号