首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Adaptive local regularization methods for the inverse ECG problem
Authors:Christopher R Johnson  Robert S MacLeod
Institution:

a Department of Computer Science, University of Utah Salt Lake City, UT 84112 USA

b Cardiovascular Research and Training Institute, University of Utah Salt Lake City, UT 84112 USA

Abstract:One of the fundamental problems in theoretical electrocardiography can be characterized by an inverse problem. We present new methods for achieving better estimates of heart surface potential distributions in terms of torso potentials through an inverse procedure. First, we outline an automatic adaptive refinement algorithm that minimizes the spatial discretization error in the transfer matrix, increasing the accuracy of the inverse solution. Second, we introduce a new local regularization procedure, which works by partitioning the global transfer matrix into sub-matrices, allowing for varying amounts of smoothing. Each submatrix represents a region within the underlying geometric model in which regularization can be specifically ‘tuned’ using an a priori scheme based on the L-curve method. This local regularization method can provide a substantial increase in accuracy compared to global regularization schemes. Within this context of local regularization, we show that a generalized version of the singular value decomposition (GSVD) can further improve the accuracy of ECG inverse solutions compared to standard SVD and Tikhonov approaches. We conclude with specific examples of these techniques using geometric models of the human thorax derived from MRI data.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号