首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Beta-adrenergic and muscarinic modulation of human embryonic stem cell-derived cardiomyocytes.
Authors:Michael Reppel  Cornelia Boettinger  Juergen Hescheler
Institution:Institute of Neurophysiology, University of Cologne, Germany.
Abstract:BACKGROUND: Embryonic stem cells provide the most promising tool for cell replacement therapy including transplantation of human embryonic stem (hES) cell- derived cardiomyocytes in the infarcted area of the heart. Here we provide data for differentiation of cardiomyocytes from hES cells and firstly describe their hormonal modulation. METHODS: Using Micro-Electrode Arrays as a novel electrical mapping technique of beating cardiomyocyte clusters within whole hES cell aggregates, we were able to measure the field potential generation and morphology changes during hormonal modulation. RESULTS: We found that isoproterenol provokes, similar to the mouse ES cell system, a strong positive chronotropic effect with an EC50 of around 10(-8) M. Moreover, isoproterenol stimulated with a higher EC50 value the slow field potential amplitude, FP(slow), indicating a stimulation of Ca2+ channels in ventricular-like ES cell-derived cardiomyocytes which is shown to be clearly independent from frequency modulation. In contrast, carbachol (10 microM) produced a transient negative chronotropic effect but had no effect on FP(slow). CONCLUSION: The Micro-Electrode system allows measurement of ionic channel modulation and chronotropic responsiveness in a pharmacological screening setup. Moreover, all our data indicate that cardiomyocytes derived from human embryonic stem cells exhibit a physiological response to the major hormones of the vegetative nervous system and might therefore serve as an ideal candidate for the use in cell replacement strategies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号