首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of inhibitory effects of NH2OH and its N-methyl derivatives on the O2-evolving complex of Photosystem II
Authors:Rui Mei  Charles Yocum
Affiliation:(1) Department of Biology, University of Michigan, 48109-1048 Ann Arbor, MI, USA;(2) Department of Chemistry, University of Michigan, 48109-1048 Ann Arbor, MI, USA
Abstract:Inorganic cofactors (Mn, Ca2+ and Cl-) are essential for oxidation of H2O to O2 by Photosystem II. The Mn reductants NH2OH and its N-methyl derivatives have been employed as probes to further examine the interactions between these species and Mn at the active site of H2O oxidation. Results of these studies show that the size of a hydroxylamine derivative regulates its ability to inactivate O2 evolution activity, and that this size-dependent inhibition behavior arises from the protein structure of Photosystem II. A set of anions (Cl-, F- and SO42-) is able to slow NH2OH and CH3NHOH inactivation of intact Photosystem II membranes by exerting a stabilizing influence on the extrinsic 23 and 17 kDa polypeptides. In contrast to this non-specific anion effect, only Cl- is capable of attenuating CH3NHOH and (CH3)2NOH inhibition in salt-washed preparations lacking the 23 and 17 kDa polypeptides. However, Cl- fails to protect against NH2OH inhibition in salt-washed membranes. These results indicate that the attack by NH2OH and its N-methyl derivatives on Mn occurs at different sites in the O2-evolving complex. The small reductant NH2OH acts at a Cl--insensitive site whereas the inhibitions by CH3NHOH and (CH3)2NOH involve a site that is Cl- sensitive. These findings are consistent with earlier studies showing that the size of primary amines controls the Cl- sensitivity of their binding to Mn in the O2-evolving complex.Abbreviation MES 4-morpholinoethanesulfonic acid - PS II Photosystem II
Keywords:anions  Cl-  hydroxylamines  manganese  O2 evolution  Photosystem II
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号