首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dual Application of 24-Epibrassinolide and Spermine Confers Drought Stress Tolerance in Maize (<Emphasis Type="Italic">Zea mays</Emphasis> L.) by Modulating Polyamine and Protein Metabolism
Authors:Neveen B Talaat  Bahaa T Shawky
Institution:1.Department of Plant Physiology, Faculty of Agriculture,Cairo University,Giza,Egypt;2.Genetic Engineering and Biotechnology Research Division, Department of Microbial Chemistry,National Research Center,Giza,Egypt
Abstract:No information is available concerning the influence of dual application of 24-epibrassinolide (EBL) and spermine (Spm) on the nitrogen metabolism in plants subjected to drought conditions. As a first report, this investigation assesses the role of EBL, Spm, and their dual application on polyamine and protein pools in water-stressed plants. It explores the ameliorative effects of these foliar applications under water deficiency. Two maize hybrids (Giza 10 and Giza 129) were treated with or without EBL and/or Spm foliar applications under well-irrigated and drought-stressed conditions (75 and 50 % of field capacity). Dual application (25 mg l?1 Spm + 0.1 mg l?1 EBL) significantly relieved the drought-induced inhibition on the activities of ribulose-1,5-bisphosphate carboxylase and nitrate reductase and the contents of relative water, nitrate, and protein, particularly in hybrid Giza 129. Changes in the content of free polyamines and in the activity of polyamine biosynthetic and catabolic enzymes were detected when water-stressed plants were treated with EBL and/or Spm. Putrescine content and arginine decarboxylase activity were significantly increased in stressed hybrid Giza 10 plants treated by the dual application. However, spermidine and Spm levels as well as ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were significantly increased in stressed hybrid Giza 129 plants treated with the dual application. Diamine oxidase, polyamine oxidase, protease activity, carbonyl content, and ethylene formation were increased in response to water stress and significantly decreased when stressed plants were treated by the dual application. Total free amino acids, phenols, and flavonoids concentration were increased with the increasing water stress level; moreover, they further increased in stressed plants treated with the dual application. Overall, the combined utilization of EBL and Spm serves as complementary tools to confer plant drought tolerance by altering polyamine, ethylene, and protein levels.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号