首页 | 本学科首页   官方微博 | 高级检索  
     


Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix
Authors:Zong Shuizhen  Cao Yong  Zhou Yuming  Ju Huangxian
Affiliation:MOE Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China.
Abstract:A novel matrix, zirconia nanoparticles enhanced grafted collagen (ZrO2-grafted collagen) hybrid composite, for immobilization of protein and biosensing was developed. The scanning electron microscopy, UV-vis and Fourier transform infrared spectra, and electrochemical measurements showed that the matrix was well biocompatible and could retain the bioactivity of immobilized protein to a large extent. The direct electron transfer of the immobilized myoglobin (Mb) exhibited a couple of stable and well-defined redox peaks with the formal potential of -336 mV (versus SCE) in 0.1M pH 7.0 PBS. This matrix could accelerate the electron transfer between Mb and the electrode with a surface-controlled process and an electron transfer rate constant of 3.58+/-0.35s-1 at 10-500 mVs-1. The Mb immobilized in the matrix showed a high thermal stability up to 70 degrees C and an electrocatalytic activity to the reduction of hydrogen peroxide (H2O2) without the help of an electron mediator. The linear response range of the biosensor to H2O2 concentration was from 1.0 to 85.0 microM with the limit of detection of 0.63 microM at a signal-to-noise ratio of 3sigma. The biosensor exhibited high sensitivity, acceptable stability and reproducibility. This work opened a way for the further study on the direct electron transfer and biosensing application of the immobilized protein in collagen-related matrices.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号