首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of mitochondrial respiration overcomes hepatocellular carcinoma chemoresistance
Authors:Yuan Sun  Hai Xu  Xinju Chen  Xiaodong Li  Baoping Luo
Institution:1. College of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430070, China;2. Huangjiahu Hospital of Hubei University of Chinese Medicine, Wuhan, 430070, China;3. The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China;4. Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430070, China
Abstract:The clinical management of advanced hepatocellular carcinoma (HCC) is challenging due to its resistance to chemotherapy. In our work, we demonstrate that an antiparasitic drug atovaquone at clinically relevant concentrations is active against chemoresistant HCC. We show that atovaquone inhibits proliferation and induces apoptosis in not only HCC parental cells but also cells exposed to long time culture of chemotherapeutic agents. Consistently, the combination of atovaquone with cisplatin or doxorubicin achieved remarkably greater efficacy than single drug alone. Mechanistically, atovaquone overcomes HCC chemoresistance via supressing mitochondrial respiration and inducing oxidative stress. Atovaquone but not cisplatin or doxorubicin is ineffective in mitochondrial respiration-deficient ρ0, confirming mitochondria as a specific upstream target of atovaquone. Interestingly, we show that prolonged exposure of HCC cells to chemotherapeutic agents induces higher level of mitochondrial respiration, suggesting that tumors which develop chemoresistance after chemotherapy might be more dependent on mitochondrial respiration than primary tumors and explaining the sensitivity of chemoresistant HCC cells to atovaquone. We further show that atovaquone at tolerable does significantly inhibits chemoresistant HCC growth in mice throughout the duration of treatment. In line with in vitro data, we observe the increased oxidative stress in atovaquone-treated tumors. Our findings highlight the dependency of chemoresistant HCC on mitochondrial respiration and demonstrate that atovaquone is a potential drug to overcome HCC chemoresistance.
Keywords:Atovaquone  HCC  Chemoresistance  Mitochondrial respiration  Oxidative stress
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号