首页 | 本学科首页   官方微博 | 高级检索  
     


Functional role and ribosomal position of the unique N-terminal region of DHX29, a factor required for initiation on structured mammalian mRNAs
Authors:Trevor R Sweeney,Vidya Dhote,Ewelina Guca,Christopher U T Hellen,Yaser Hashem,Tatyana   V Pestova
Affiliation:Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA;The Pirbright Institute, Woking, Surrey, UK;INSERM U1212 Acides nucléiques : Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
Abstract:Translation initiation on structured mammalian mRNAs requires DHX29, a DExH protein that comprises a unique 534-aa-long N-terminal region (NTR) and a common catalytic DExH core. DHX29 binds to 40S subunits and possesses 40S-stimulated NTPase activity essential for its function. In the cryo-EM structure of DHX29-bound 43S preinitiation complexes, the main DHX29 density resides around the tip of helix 16 of 18S rRNA, from which it extends through a linker to the subunit interface forming an intersubunit domain next to the eIF1A binding site. Although a DExH core model can be fitted to the main density, the correlation between the remaining density and the NTR is unknown. Here, we present a model of 40S-bound DHX29, supported by directed hydroxyl radical cleavage data, showing that the intersubunit domain comprises a dsRNA-binding domain (dsRBD, aa 377–448) whereas linker corresponds to the long α-helix (aa 460–512) that follows the dsRBD. We also demonstrate that the N-terminal α-helix and the following UBA-like domain form a four-helix bundle (aa 90–166) that constitutes a previously unassigned section of the main density and resides between DHX29’s C-terminal α-helix and the linker. In vitro reconstitution experiments revealed the critical and specific roles of these NTR elements for DHX29’s function.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号