首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Unusual ADP-forming acetyl-coenzyme A synthetases from the mesophilic halophilic euryarchaeon <Emphasis Type="Italic">Haloarcula marismortui</Emphasis> and from the hyperthermophilic crenarchaeon <Emphasis Type="Italic">Pyrobaculum aerophilum</Emphasis>
Authors:Christopher?Br?sen  Email author" target="_blank">Peter?Sch?nheitEmail author
Institution:(1) Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
Abstract:ADP-forming acetyl-CoA synthetase (ACD), the novel enzyme of acetate formation and energy conservation in archaea ( $${\text{Acetyl - CoA}} + {\text{ADP}} + {\text{P}}_{{\text{i}}} \rightleftarrows {\text{acetate}} + {\text{ATP}} + {\text{CoA}}$$ ), has been studied only in few hyperthermophilic euryarchaea. Here, we report the characterization of two ACDs with unique molecular and catalytic features, from the mesophilic euryarchaeon Haloarcula marismortui and from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. ACD from H. marismortui was purified and characterized as a salt-dependent, mesophilic ACD of homodimeric structure (166 kDa). The encoding gene was identified in the partially sequenced genome of H. marismortui and functionally expressed in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies following solubilization and refolding in the presence of salts. The ACD catalyzed the reversible ADP- and Pi-dependent conversion of acetyl-CoA to acetate. In addition to acetate, propionate, butyrate, and branched-chain acids (isobutyrate, isovalerate) were accepted as substrates, rather than the aromatic acids, phenylacetate and indol-3-acetate. In the genome of P. aerophilum, the ORFs PAE3250 and PAE 3249, which code for agr and beta subunits of an ACD, overlap each other by 1 bp, indicating a novel gene organization among identified ACDs. The two ORFs were separately expressed in E. coli and the recombinant subunits agr (50 kDa) and beta (28 kDa) were in-vitro reconstituted to an active heterooligomeric protein of high thermostability. The first crenarchaeal ACD showed the broadest substrate spectrum of all known ACDs, catalyzing the conversion of acetyl-CoA, isobutyryl-CoA, and phenylacetyl-CoA at high rates. In contrast, the conversion of phenylacetyl-CoA in euryarchaeota is catalyzed by specific ACD isoenzymes.Dedicated to Prof. Dr. Dr. h.c. mult. Hans Günter Schlegel on the occasion of his 80th birthday.
Keywords:ADP-forming acetyl-coenzyme A synthetase  Halophilic and hyperthermophilic archaea  Haloarcula marismortui  Pyrobaculum aerophilum  Gene organization
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号