首页 | 本学科首页   官方微博 | 高级检索  
     


Tyrosines in the Kinesin-5 Head Domain Are Necessary for Phosphorylation by Wee1 and for Mitotic Spindle Integrity
Authors:Kristin Garcia   Jason Stumpff   Tod Duncan  Tin Tin Su  
Affiliation:1Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347, USA
Abstract:Mitotic spindle assembly and maintenance relies on kinesin-5 motors that act as bipolar homotetramers to crosslink microtubules [1], [2], [3], [4] and [5]. Kinesin-5 motors have been the subject of extensive structure-function analysis [5], but the regulation of their activity in the context of mitotic progression remains less well understood [2]. We report here that Drosophila kinesin-5 (KLP61F) is regulated by Drosophila Wee1 (dWee1). Wee1 tyrosine kinases are known to regulate mitotic entry via inhibitory phosphorylation of Cdk1 [6], [7], [8], [9] and [10]. Recently, we showed that dWee1 also plays a role in mitotic spindle positioning through γ-tubulin and spindle fidelity through an unknown mechanism [11]. Here, we investigated whether a KLP61F-dWee1 interaction could explain the latter role of dWee1. We found that dWee1 phosphorylates KLP61F in vitro on three tyrosines within the head domain, the catalytic region that mediates movement along microtubules. In vivo, KLP61F with tyrosine→phenylalanine mutations fails to complement a klp61f mutant and dominantly induces spindle defects similar to ones seen in dwee1 mutants. We propose that phosphorylation of the KLP61F catalytic domain by dWee1 is important for the motor's function. This study identifies a second substrate for a Wee1 kinase and provides evidence for phosphoregulation of a kinesin in the head domain.
Keywords:CELLBIO   CELLCYCLE
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号