首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Methyl Mercury Stimulates Protein 32P Phospholabeling in Cerebellar Granule Cell Culture
Authors:Theodore Sarafian  M Anthony Verity
Institution:Department of Pathology (Neuropathology), UCLA School of Medicine 90024-173216.
Abstract:Cultures of cerebellar granule neurons have been utilized to examine morphological and biochemical consequences of methyl mercury (MeHg). Exposure to MeHg for 24 h was found to exert toxic effects at concentrations below 1 microM characterized by neuron degeneration and neuritic varicosities. Dose-response and time course profiles for cell death were established using the 51Cr release assay, which revealed that 1 microM MeHg produced 15% cell death at 24 h, progressing to 50% at 48 h. Labeling of cultures with 32P]orthophosphate following 24-h exposure to 1 microM MeHg disclosed abnormalities in both protein and lipid phosphorylation. After 24-h exposure to 5 microM MeHg, phospholabeling of protein and lipid increased 174 and 128%, respectively, compared with controls. This stimulation of phosphorylation appeared to be neuron specific since cultures enriched in cerebellar glial cells and devoid of granule neurons displayed dose-dependent inhibition of total phosphorylation. Measurement of 32P labeling of ATP using a cyclic AMP-dependent protein kinase assay in conjunction with the firefly luciferase assay for ATP indicated no significant change in either total ATP levels or 32P]ATP specific activity at 1 or 4 h as a function of MeHg]. Studies measuring 32P-phosphoprotein turnover indicated that MeHg had no effect on intracellular protein phosphatase activity. We conclude that one of the manifestations associated with in vitro cerebellar granule cell neurotoxicity is an abnormality in protein phosphorylation that is independent of 32P]ATP specific activity and protein phosphatase activity.
Keywords:Methyl mercury  Neuronal culture  Protein phosphorylation  Cytotoxicity  [32P]ATP specific activity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号