首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mineral and matrix contributions to rigidity in fracture healing
Authors:D A Chakkalakal  L Lippiello  R F Wilson  R Shindell  J F Connolly
Institution:Research Service, Omaha Veterans Administration Medical Center, NE.
Abstract:The purpose of this study was to investigate the relationships among selected properties of fracture callus: bending rigidity, tissue density, mineral density, matrix density and mineral-to-matrix ratio. The experimental model was an osteotomized canine radius in which the development of the fracture callus was modified by electrical stimulation with various levels of direct current. This resulted in a range of values for the selected properties of the callus, determined post mortem at 7 weeks after osteotomy. We found that the rigidity (R) of the bone-callus combination obeyed relationships of the form R = axb, where x is the tissue density, mineral density, matrix density or the mineral-to-matrix ratio of the repair tissue. These are analogous to power-law relationships found in studies of compact and cancellous bone. The results suggest that fracture callus at 7 weeks after osteotomy in canine radius behaves more like immature compact bone than cancellous bone in its mechanical and physicochemical properties. The present study demonstrates the feasibility of developing non-invasive in vivo densitometric methods to monitor fracture healing, since models may be developed that can predict mechanical properties from densitometric data. Further studies are needed to develop a refined model based on experimental data on the mechanical and physicochemical properties and microstructure of fracture callus at different stages of healing.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号