首页 | 本学科首页   官方微博 | 高级检索  
     


Cytokinin and Ethylene Affect Auxin Transport-Dependent Rhizogenesis in Hypocotyls of Common Ice Plant (Mesembryanthemum crystallinum L.)
Authors:Robert Konieczny  Jan Kępczyński  Maria Pilarska  Danuta Cembrowska  Diedrik Menzel  Jozef Šamaj
Affiliation:1.Department of Plant Cytology and Embryology,Jagiellonian University,Kraków,Poland;2.Department of Plant Physiology and Biotechnology,University of Szczecin,Szczecin,Poland;3.Institute of Cellular and Molecular Botany,University of Bonn,Bonn,Germany;4.Institute of Plant Genetics and Biotechnology,Slovak Academy of Sciences,Nitra,Slovak Republic;5.Faculty of Natural Sciences,Palacky University,Olomouc,Czech Republic
Abstract:Hypocotyl explants of Mesembryanthemum crystallinum regenerated roots when cultured vertically with either the apical end (AE) or basal end (BE) in media containing indole-3-acetic acid (IAA). IAA alone induced roots regularly from the basal end of the explants, either from the cut surface immersed in the medium or from the opposite side. The inhibitors of auxin efflux carriers, α-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), inhibited rhizogenesis only from AE-cultured explants, indicating the role of polar auxin transport in root regeneration in this system. Cytokinin (zeatin, kinetin, BAP) added to auxin-containing medium reduced rhizogenesis from the explants maintained with BE and AE and additionally changed the IAA-induced pattern of rooting in AE-cultured explants by favoring rooting from the apical end and middle part of the hypocotyl with its concomitant reduction from the basal end. The addition of kinetin did not influence the content of IAA in the explants maintained with AE, suggesting that the cytokinin effect on root patterning was not dependent on auxin biosynthesis. Kinetin, however, strongly enhanced ethylene production. The importance of ethylene in regulating PAT-dependent rhizogenesis was tested by using an ethylene antagonist AgNO3, an inhibitor of ethylene synthesis aminoethoxyvinylglycine (AVG), and a precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC). AgNO3 applied together with IAA or with IAA and kinetin strongly reduced the production of ethylene, inhibited rhizogenesis, and induced nonregenerative callus from BE, suggesting the need for ethylene signaling to elicit the rhizogenic action of auxin. A reduction of rhizogenesis and decrease of ethylene biosynthesis was also caused by AVG. In addition, AVG at 10 μM reversed the effect of cytokinin on root patterning, resulting in roots emerging only from BE on the medium with IAA and kinetin. Conversely, ACC at 200 μM markedly enhanced the production of ethylene and partly mimicked the effect of cytokinin when applied with IAA alone, thus confirming that in cultured hypocotyls of ice plant, cytokinin affects IAA-induced rhizogenesis through an ethylene-dependent pathway.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号