首页 | 本学科首页   官方微博 | 高级检索  
     


GroEL stability and function. Contribution of the ionic interactions at the inter-ring contact sites
Authors:Sot Begoña  Bañuelos Sonia  Valpuesta Jose María  Muga Arturo
Affiliation:Unidad de Biofísica, Consejo Superior de Investigaciones Científicas-Universidad del País Vasco Euskal Herriko Unibertsitatea and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48080 Bilbao, Spain.
Abstract:The chaperonin GroEL consists of a double ring structure made of identical subunits that display different modes of allosteric communication. The protein folding cycle requires the simultaneous positive intra-ring and negative inter-ring cooperativities of ATP binding. This ensures GroES binding to one ring and release of the ligands from the opposite one. To better characterize inter-ring allosterism, the thermal stability as well as the temperature dependence of the functional and conformational properties of wild type GroEL, a single ring mutant (SR1) and two single point mutants suppressing one interring salt bridge (E434K and E461K) were studied. The results indicate that ionic interactions at the two interring contact sites are essential to maintain the negative cooperativity for protein substrate binding and to set the protein thermostat at 39 degrees C. These electrostatic interactions contribute distinctly to the stability of the inter-ring interface and the overall protein stability, e.g. the E434K thermal inactivation curve is shifted to lower temperatures, and its unfolding temperature and activation energy are also lowered. An analysis of the ionic interactions at the inter-ring contact sites reveals that at the so called "left site" a network of electrostatic interactions involving three charged residues might be established, in contrast to what is found at the "right site" where only two oppositely charged residues interact. Our data suggest that electrostatic interactions stabilize protein-protein interfaces depending on both the number of ionic interactions and the number of residues engaged in each of these interactions. In the case of GroEL, this combination sets the thermostat of the protein so that the chaperonin distinguishes physiological from stress temperatures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号