首页 | 本学科首页   官方微博 | 高级检索  
     


Prostaglandin biosynthesis and catabolism in the developing fetal sheep lung.
Authors:C R Pace-Asciak
Abstract:The prostaglandin biosynthetic and catabolic capacity of homogenates of lungs from fetal sheep of various gestational ages was measured. Prostaglandin biosynthesis was assayed by the deuterium-isotope dilution technique making use of mass fragmentography whereas prostaglandin catabolism was measured by the radioisotope-dilution method described previous (Pace-Asciak, C.R. and Rangaraj, G. (1976) J. Biol. Chem. 251, 3381-3385). Homogenates of lungs from fetuses of all ages tested (40 days to term) formed both prostaglandins E2 and F2alpha; although prostaglandin F2alpha was formed to a greater extent than prostaglandin E2 by the 40 days lung, prostaglandin E2 increased with increasing age until at term the ratio of both prostaglandins approached unity. Total prostaglandin biosynthesis (E2 + F2alpha) rose gradually with age (approx. 3 fold increase between 40 days and term). Prostaglandin F2alpha catabolism occurred mainly by the prostaglandin 15-hydroxy dehydrogenase pathway; this activity was detectable even at 40 days and remained unchanged up to 80 days. Prostaglandin catabolic activity rose sharply at 90 days (approx. 3 fold) with a maximum around 110 days (approx. 4 fold) decreasing back to 40 day levels by term (143 days). The increasing prostaglandin catabolic activity around 90-100 days in this species is discussed in relation to the hemodynamic changes in the lungs starting around this age and the appearance of surfactant. Prostaglandin catabolism might play an important role in the developing organ controlling steady state concentrations of prostaglandins during certain periods of organogenesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号