首页 | 本学科首页   官方微博 | 高级检索  
     


Differences between the flag leaf and the ear of a spring wheat cultivar (Triticum aestivum cv. Arkas) with respect to the CO2 response of assimilation, respiration and stomatal conductance
Authors:D. Knoppik,H. Selinger,A. Ziegler-Jö  ns
Affiliation:Arbeitsgruppe Biophysik, Lehrstuhl für Physik, Technische Univ. München-Weihenstephan, D-8050 Freising 12, F.R.G.
Abstract:The CO2- and H2O-exchanges in the flag leaf and the ear of a spring wheat cultivar (Triticum aestivum L. cv. Arkas) were measured at CO2 partial pressures, pi(CO2), between 8 and 400 Pa under high photosynthetic photon flux densities (2000 μmol m?2 s?1). The experiments were carried out on each organ separately while attached to the intact plant, from the time of ear emergence through senescence. To study the contribution of the kernels to the gas exchange of ears, experiments were also carried out on sterilized ears (treatment A), and on ears from which the kernels were removed (treatment B). Flag leaves and ears differed considerably with regard to CO2-dependence of assimilation, response of stomata to varying pa(CO2), CO2 compensation point (and its temperature dependence), dark respiration, and dissimilation in the light (i.e. CO2 production which is not due to oxygenation of ribulose 1,5-bisphosphate). The higher dark respiration of the ear originated mainly from the kernels and continued to some extent in the light. Thus, the CO2 compensation point was attained at higher CO2 partial pressures for the ear than for the flag leaf. The CO2 uptake of the ear was not saturated at intercellular CO2 partial pressures below 180 Pa CO2, while that of the flag leaf reached saturation at about 80 Pa CO2. CO2-saturated rates of CO2 uptake were 2.5 and 1.5 times the rates at natural CO2 partial pressure for ear and flag leaf, respectively. The stomatal conductance decreased with rising CO2 partial pressure above 35 Pa, in a more pronounced manner for the flag leaf than for the ear.
Keywords:CO2 compensation point    CO2 uptake    kernels    respiration    transpiration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号