首页 | 本学科首页   官方微博 | 高级检索  
     


BTXpred: prediction of bacterial toxins
Authors:Saha Sudipto  Raghava Gajendra P S
Affiliation:Institute of Microbial Technology Sector-39A, Chandigarh, India.
Abstract:This paper describes a method developed for predicting bacterial toxins from their amino acid sequences. All the modules, developed in this study, were trained and tested on a non-redundant dataset of 150 bacterial toxins that included 77 exotoxins and 73 endotoxins. Firstly, support vector machines (SVM) based modules were developed for predicting the bacterial toxins using amino acids and dipeptides composition and achieved an accuracy of 96.07% and 92.50%, respectively. Secondly, SVM based modules were developed for discriminating entotoxins and exotoxins, using amino acids and dipeptides composition and achieved an accuracy of 95.71% and 92.86%, respectively. In addition, modules have been developed for classifying the exotoxins (e.g. activate adenylate cyclase, activate guanylate cyclase, neurotoxins) using hidden Markov models (HMM), PSI-BLAST and a combination of the two and achieved overall accuracy of 95.75%, 97.87% and 100%, respectively. Based on the above study, a web server called 'BTXpred' has been developed, which is available at http://www.imtech.res.in/raghava/btxpred/. Supplementary information is available at http://www.imtech.res.in/raghava/btxpred/supplementary.html.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号