首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Location and mobility of twin arginine translocase subunits in the Escherichia coli plasma membrane
Authors:Ray Nicola  Nenninger Anja  Mullineaux Conrad W  Robinson Colin
Institution:Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
Abstract:The twin arginine translocation (Tat) system transports folded proteins across the bacterial plasma membrane. Two primary Tat complexes have been identified, comprising TatABC or TatA multimers, which may interact at the point of translocation. We have analyzed green/cyan/yellow fluorescent protein (XFP) fusions to each of the Tat subunits. We show that the TatB and TatC fusions are active and incorporated into purified TatABC complexes. Proteolytic clipping of the TatA-XFP fusion precludes a definitive conclusion regarding activity, but we do find that the full fusion protein is preferentially incorporated into the TatABC complex. A previous study has proposed that TatB and possibly TatC are localized at the cell poles, whereas TatA is distributed more uniformly throughout the plasma membrane. Here, we likewise show that TatA-XFP is primarily distributed around the periphery of the cell. However, whereas much of the TatB-XFP is found at the poles, quantitative imaging studies show that approximately half of the protein is uniformly distributed in the plasma membrane. Moreover, we show that the bulk of TatC-XFP is detected as a halo around the cells, in some cases as punctate areas that are much smaller than those occupied by TatB-green fluorescent protein (GFP), indicating a uniform distribution. No evidence for a polar localization of TatC-GFP was obtained. Although TatC-GFP is found correctly complexed with TatB, a high proportion of TatB-GFP is not linked to TatC, and we propose that this "free" TatB forms unphysiological assemblies, possibly because it is synthesized in excess. Since TatC is invariably complexed with TatB in wild-type complexes, the combined data demonstrate that TatABC complexes are uniformly distributed throughout the plasma membrane. The significance of the punctate TatA/B/C-GFP is unclear; fluorescence recovery after photobleaching measurements show that these pools of proteins are immobile, whereas nonaggregated proteins are highly mobile in the plasma membrane.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号