首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Constancy of the G matrix in ecological time
Authors:Björklund Mats
Institution:Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyv?gen 18 D, SE-752 36 Uppsala, Sweden. mats.bjorklund@ebc.uu.se
Abstract:The constancy of the genetic variance-covariance matrix (G matrix) across environments and populations has been discussed and tested empirically over the years but no consensus has so far been reached. In this paper, I present a model in which morphological traits develop hierarchically, and individuals differ in their resource allocation and acquisition patterns. If the variance in resource acquisition is many times larger than the variance in resource allocation then strong genetic correlations are expected, and with almost isometric relations among traits. As the variation in resource acquisition decreases below a certain threshold, the correlations decrease overall and the relations among traits become a function of the allocation patterns, and in particular reflecting the basal division of allocation. A strong bottleneck can break a pattern of strong genetic correlation, but this effect diminishes rapidly with increasing bottleneck size. This model helps to understand why some populations change their genetic correlations in different environments, whereas others do not, since the key factor is the relation between the variances in resource acquisition and allocation. If a change in environment does not lead to a change in this ratio, no change can be expected, whereas if the ratio is changed substantially then major changes can be expected. This model can also help to understand the constancy of morphological patterns within larger taxa as a function of constancy in resource acquisition patterns over time and environments. When this pattern breaks, for example on islands, larger changes can be expected.
Keywords:Acquisition  allocation  bottleneck  constancy  genetic variance-covariance matrix  
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号