首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Investigation of styrene in the liver perfusion/cell culture system. No indication of styrene-7,8-oxide as the principal mutagenic metabolite produced by the intact rat liver
Authors:B Beije  D Jenssen
Institution:1. Division of Cellular Toxicology, Environmental Toxicology Unit, University of Stockholm, Wallenberg Laboratory, S-10691 Stockholm Sweden;2. Division of Toxicological Genetics, Environmental Toxicology Unit, University of Stockholm, Wallenberg Laboratory, S-10691 Stockholm Sweden
Abstract:Mutagenic effect of styrene and styrene-7,8-oxide was studied with the isolated perfused rat liver as metabolizing system and Chinese hamster V79 cells as genetic target cells. Styrene-7,8-oxide which is mutagenic per se was rapidly metabolized by the perfused rat liver. Thus no mutagenic effect was detected neither in the perfusion medium nor in the bile. However when styrene was added to the perfusion system, an increase in V79 mutants was observed regardless of where in the circulating perfusion medium the V79 cells were placed: the same effect was obtained with V79 cells close to the liver as well as at a distance from the liver. No mutagenic effect was observed in the bile. Simultaneous analysis of the styrene-7,8-oxide concentration in the perfusion medium, suggest that this metabolite is not the cause of the mutagenic effect observed during perfusion with styrene.The effect of the two test compounds on some liver functions was also studied. Both styrene and styrene-7,8-oxide changed the bile flow without affecting bile acid secretion: styrene caused a reduction in bile flow as compared to control perfusions and styrene-7,8-oxide increased the bile flow. Styrene, but not styrene-7,8-oxide, reduced gluconeogenesis from lactate. Styrene had no effect on the liver's capacity to incorporate amino acids into plasma proteins, whereas styrene-7,8-oxide reduced the amino acid incorporation. The microsomal cytochrome P-450 content was not affected by the two test compounds. No alteration in microsomal N- and C-oxygenation of N, N-dimethylaniline (DMA) was observed with styrene-7,8-oxide or the lower styrene dose used (240 μmol), whereas the higher styrene concentration (480 μmol) reduced N-oxygenation and thus also the total DMA metabolism.It is suggested that the results on styrene and styrene-7,8-oxide found here using the liver perfusion/cell culture system mimic the metabolism expected to be found in the intact animal, thus indicating that styrene-7,8-oxide is not the principal mutagenic metabolite of styrene in vivo.
Keywords:DMA  GOT  glutamic oxalacetic transaminase  HBSS  Hank's balanced salt solution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号