首页 | 本学科首页   官方微博 | 高级检索  
     


Anaerobic Metabolism in the N-Limited Green Alga Selenastrum minutum: I. Regulation of Carbon Metabolism and Succinate as a Fermentation Product
Authors:Vanlerberghe G C  Feil R  Turpin D H
Affiliation:Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
Abstract:The onset of anaerobiosis in darkened, N-limited cells of the green alga Selenastrum minutum (Naeg.) Collins elicited the following metabolic responses. There was a rapid decrease in energy charge from 0.85 to a stable lower value of 0.6 accompanied by rapid increases in pyruvate/phosphoenolpyruvate and fructose-1,6-bisphosphate/fructose-6-phosphate ratios indicating activation of pyruvate kinase and 6-phosphofructokinase, respectively. There was also a large increase in fructose-2,6-bisphosphate, which, since this alga lacks pyrophosphate dependent 6-phosphofructokinase, can be inferred to inhibit gluconeogenic fructose-1,6-bisphosphatase activity. These changes resulted in an approximately twofold increase in the rate of starch breakdown indicating a Pasteur effect. The Pasteur effect was accompanied by accumulation of d-lactate, ethanol and succinate as fermentation end-products, but not malate. Accumulation of succinate was facilitated by reductive carbon metabolism by a partial TCA cycle (GC Vanlerberghe, AK Horsey, HG Weger, DH Turpin [1989] Plant Physiol 91: 1551-1557). An initial stoichiometric decline in aspartate and increases in succinate and alanine suggests that aspartate catabolism provides an initial source of carbon for reduction to succinate under anoxic conditions. These observations allow us to develop a model for the regulation of anaerobic carbon metabolism and a model for short-term and long-term strategies for succinate accumulation in a green alga.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号