首页 | 本学科首页   官方微博 | 高级检索  
     


Interval estimation of genetic susceptibility for retrospective case-control studies
Authors:Dmitri V Zaykin  Zhaoling Meng  Sujit K Ghosh
Affiliation:1. Department of Population Genetics, GlaxoSmithKline Inc., 13398, Five Moore Drive, 27709, Research Triangle Park, NC, USA
2. Department of Statistics, North Carolina State University, Raleigh, 27695-8203, NC, USA
Abstract:

Background

This article describes classical and Bayesian interval estimation of genetic susceptibility based on random samples with pre-specified numbers of unrelated cases and controls.

Results

Frequencies of genotypes in cases and controls can be estimated directly from retrospective case-control data. On the other hand, genetic susceptibility defined as the expected proportion of cases among individuals with a particular genotype depends on the population proportion of cases (prevalence). Given this design, prevalence is an external parameter and hence the susceptibility cannot be estimated based on only the observed data. Interval estimation of susceptibility that can incorporate uncertainty in prevalence values is explored from both classical and Bayesian perspective. Similarity between classical and Bayesian interval estimates in terms of frequentist coverage probabilities for this problem allows an appealing interpretation of classical intervals as bounds for genetic susceptibility. In addition, it is observed that both the asymptotic classical and Bayesian interval estimates have comparable average length. These interval estimates serve as a very good approximation to the "exact" (finite sample) Bayesian interval estimates. Extension from genotypic to allelic susceptibility intervals shows dependency on phenotype-induced deviations from Hardy-Weinberg equilibrium.

Conclusions

The suggested classical and Bayesian interval estimates appear to perform reasonably well. Generally, the use of exact Bayesian interval estimation method is recommended for genetic susceptibility, however the asymptotic classical and approximate Bayesian methods are adequate for sample sizes of at least 50 cases and controls.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号