首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Defects in mitochondrial DNA replication and oxidative damage in muscle of mtDNA mutator mice
Institution:1. Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA;2. Department of Kinesiology, McMaster University, Hamilton, ON L8N 3Z5, Canada;3. Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada;4. Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada;1. Centre for Asthma and Respiratory Diseases, The University of Newcastle, New Lambton Heights, New South Wales, Australia;2. School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia;3. Lung and Allergy Research Centre, School of Medicine, The University of Queensland, Brisbane, Queensland, Australia;4. Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia;6. School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia;1. MRC Cognition and Brain Sciences Unit, Cambridge, UK;2. Department of Theoretical and Applied Linguistics, University of Cambridge, UK;3. Department of Psychology, Royal Holloway University of London, Egham, Surrey, UK;1. Department of Biological Sciences, Dana & David Dornsife College of Letters, Arts, and Sciences, University of Southern California, CA 90089-0372, USA;2. David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA;3. David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, The Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA;4. David Geffen School of Medicine, Human Genetics, University of California, Los Angeles, CA 90095, USA;5. David Geffen School of Medicine, Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA;6. David Geffen School of Medicine, Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA;7. University Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway;8. Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway;9. VA San Diego Healthcare System, San Diego, CA 92161, USA;10. Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA;11. Iris Cantor-UCLA Women''s Health Research Center, Los Angeles, CA 90095, USA;1. Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan;2. Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China;3. Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China;4. AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan;5. SBI Pharmaceuticals Co., Ltd., Tokyo, Japan;1. Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minneapolis, MN 55455, United States;2. Department of Physical Education, Inha University, Incheon, South Korea;3. Department of Physiology, University of Valencia, Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain;1. Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan;2. Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan;3. Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
Abstract:A causal role for mitochondrial dysfunction in mammalian aging is supported by recent studies of the mtDNA mutator mouse (“PolG” mouse), which harbors a defect in the proofreading-exonuclease activity of mitochondrial DNA polymerase gamma. These mice exhibit accelerated aging phenotypes characteristic of human aging, including systemic mitochondrial dysfunction, exercise intolerance, alopecia and graying of hair, curvature of the spine, and premature mortality. While mitochondrial dysfunction has been shown to cause increased oxidative stress in many systems, several groups have suggested that PolG mutator mice show no markers of oxidative damage. These mice have been presented as proof that mitochondrial dysfunction is sufficient to accelerate aging without oxidative stress. In this study, by normalizing to mitochondrial content in enriched fractions we detected increased oxidative modification of protein and DNA in PolG skeletal muscle mitochondria. We separately developed novel methods that allow simultaneous direct measurement of mtDNA replication defects and oxidative damage. Using this approach, we find evidence that suggests PolG muscle mtDNA is indeed oxidatively damaged. We also observed a significant decrease in antioxidants and expression of mitochondrial biogenesis pathway components and DNA repair enzymes in these mice, indicating an association of maladaptive gene expression with the phenotypes observed in PolG mice. Together, these findings demonstrate the presence of oxidative damage associated with the premature aging-like phenotypes induced by mitochondrial dysfunction.
Keywords:cat"}  {"#name":"keyword"  "$":{"id":"key0010"}  "$$":[{"#name":"text"  "_":"catenanes  CCC"}  {"#name":"keyword"  "$":{"id":"key0020"}  "$$":[{"#name":"text"  "_":"covalently closed circles  ddC"}  {"#name":"keyword"  "$":{"id":"key0030"}  "$$":[{"#name":"text"  "_":"dideoxycytosine  ETC"}  {"#name":"keyword"  "$":{"id":"key0040"}  "$$":[{"#name":"text"  "_":"electron transport chain  MEFs"}  {"#name":"keyword"  "$":{"id":"key0050"}  "$$":[{"#name":"text"  "_":"mouse embryonic fibroblasts  mtDNA"}  {"#name":"keyword"  "$":{"id":"key0060"}  "$$":[{"#name":"text"  "_":"mitochondrial DNA  NT"}  {"#name":"keyword"  "$":{"id":"key0070"}  "$$":[{"#name":"text"  "_":"nitrotyrosine  PC"}  {"#name":"keyword"  "$":{"id":"key0080"}  "$$":[{"#name":"text"  "_":"protein carbonyls  NC"}  {"#name":"keyword"  "$":{"id":"key0090"}  "$$":[{"#name":"text"  "_":"nicked circles  rc"}  {"#name":"keyword"  "$":{"id":"key0100"}  "$$":[{"#name":"text"  "_":"relaxed circles  ROS"}  {"#name":"keyword"  "$":{"id":"key0110"}  "$$":[{"#name":"text"  "_":"reactive oxygen species  WT"}  {"#name":"keyword"  "$":{"id":"key0120"}  "$$":[{"#name":"text"  "_":"wild-type  1D-IMAGE"}  {"#name":"keyword"  "$":{"id":"key0130"}  "$$":[{"#name":"text"  "_":"one-dimensional intact mtDNA agarose gel electrophoresis  2D-IMAGE"}  {"#name":"keyword"  "$":{"id":"key0140"}  "$$":[{"#name":"text"  "_":"two-dimensional intact mtDNA agarose gel electrophoresis  4-HNE"}  {"#name":"keyword"  "$":{"id":"key0150"}  "$$":[{"#name":"text"  "_":"4-hydroxy-2-nonenal  8-OHdG"}  {"#name":"keyword"  "$":{"id":"key0160"}  "$$":[{"#name":"text"  "_":"8-oxodeoxyguanisine  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号