首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Multiple evolutionary mechanisms drive papillomavirus diversification
Authors:Gottschling Marc  Stamatakis Alexandros  Nindl Ingo  Stockfleth Eggert  Alonso Angel  Bravo Ignacio G
Institution:Skin Cancer Center Charité, University Hospital of Berlin, Berlin, Germany.
Abstract:The circular, double-stranded 8-kb DNA genome of papillomaviruses (PVes) consists mainly of 4 large genes, E1, E2, L2, and L1. Approximately 150 papillomavirus genomes have been sequenced to date. We analyzed a representative sample of 53 PVes genomes using maximum likelihood, Bayesian inference, maximum parsimony, and distance-based methods both on nucleotide (nt) and on amino acid (aa) alignments. When the 4 genes were analyzed separately, aa-inferred phylogenies contradicted each other less than nt-inferred trees (judged by partition homogeneity tests). In particular, gene combinations including the L2 gene generated significant incongruence (P < 0.001). Combined analyses of the remaining genes E1-E2-L1 produced a well-supported phylogeny including supertaxon beta + gamma + pi + xi-PVes (infecting Artiodactyla, Carnivora, Primates, and Rodentia) and supertaxon kappa + lambda + mu + nu + sigma-PVes (infecting Carnivora, Lagomorpha, Primates, and Rodentia). Based on the tree topology, host-linked evolution appears plausible at shallow, rather than deeper, taxonomic levels. Diversification within PVes may also involve adaptive radiation establishing different niches (within a single-host species) and recombination events (within single-host cells). Heterogeneous groups of closely related PVes infecting, for example, humans and domestic animals such as hamster, dog, and cattle suggest multiple infections across species borders. Additional evolutionary phenomena such as strong codon usage preferences, and computational biases including reconstruction artifacts and insufficient taxon sampling, may contribute to the incomplete resolution of deep phylogenetic nodes. The molecular data globally supports a complex evolutionary scenario for PVes, which is driven by multiple mechanisms but not exclusively by coevolution with corresponding hosts.
Keywords:adaptive radiation  coevolution  high performance computing  host  interspecies transmission  recombination  virology  zoonosis
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号