首页 | 本学科首页   官方微博 | 高级检索  
     


Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes
Authors:Liu Chin-San  Tsai Ching-Shan  Kuo Chen-Ling  Chen Haw-Wen  Lii Chong-Kuei  Ma Yi-Shing  Wei Yau-Huei
Affiliation:Department of Neurology and Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua 500, Taiwan.
Abstract:The role of oxidative stress in the regulation of the copy number of mitochondrial DNA (mtDNA) in human leukocytes is unclear. In this study, we investigated the redox factors in plasma that may contribute to the alteration of mtDNA copy number in human leukocytes. A total of 156 healthy subjects of 25-80 years of age who exhibited no significant difference in the distribution of subpopulations of leukocytes in blood were recruited. Small-molecular-weight antioxidants and thiobarbituric acid reactive substances (TBARS) in plasma and 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 4,977bp deletion of mtDNA in leukocytes were determined. The mtDNA copy number in leukocytes was determined by real-time PCR. The results showed that the copy number of mtDNA in leukocytes was changed with age in a biphasic manner that fits in a positively quadratic regression model (P = 0.001). Retinol (P = 0.005), non-protein thiols (P = 0.001) and ferritin (P = 0.004) in plasma and total glutathione in erythrocytes (P = 0.046) were the significant redox factors that correlated with the mtDNA copy number in leukocytes in a positive manner. By contrast, alpha-tocopherol levels in plasma (P = 0.001) and erythrocytes (P = 0.033) were negatively correlated with the mtDNA copy number in leukocytes. Three oxidative indices including the incidence of 4,977 bp deletion of mtDNA (P = 0.016) and 8-OHdG content in leukocytes (P = 0.003) and TBARS in plasma (P = 0.001) were all positively correlated with the copy number of mtDNA in leukocytes. Taken these findings together, we suggest that the copy number of mtDNA in leukocytes is affected by oxidative stress in blood circulation elicited by the alteration of plasma antioxidants/prooxidants and oxidative damage to DNA.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号