首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Zinc protects against oxidative damage in cultured human retinal pigment epithelial cells
Authors:Tate D J  Miceli M V  Newsome D A
Institution:Sensory and Electrophysiology Research Unit, Touro Infirmary, New Orleans, LA 70115, USA.
Abstract:This study was undertaken to determine whether bioavailable zinc can influence the effects of oxidative stress on cultured human retinal pigment epithelial (RPE) cells. RPE cells were maintained for 7 d in culture medium containing 14 microM total zinc, or in medium containing 0.55 microM total zinc. After 1 week, MTT assays were performed to determine the relative cytotoxicity of H2O2 or paraquat on RPE cells. Conjugated dienes and thiobarbituric acid reactive substances (TBARS) were measured in RPE cells treated with 0, 0.5 mM H2O2, 10 microM FeSO4 + 0.5 mM H2O2 or 10 microM FeSO4 + xanthine/xanthine oxidase for 24 h or paraquat for 7 d. Oxidized proteins were determined by the formation of carbonyl residues. The antioxidants metallothionein, catalase, superoxide dismutase, and glutathione peroxidase were also measured. The MTT assays showed that zinc protected cultured RPE from the toxicity of H2O2 and paraquat. RPE cells in 0.55 microM zinc medium contained higher levels of TBARS, conjugated dienes and protein carbonyls due to the oxidative stresses, compared to cells in 14 microM zinc. Catalase and MT content were reduced in cells cultured in 0.55 microM zinc medium and were reduced additionally when treated with above stresses. Superoxide dismutase activity increased in 0.55 microM zinc medium in response to these stresses. Our results show RPE cells cultured in zinc-reduced medium are more susceptible to oxidative insult.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号