首页 | 本学科首页   官方微博 | 高级检索  
     


Control of cellular redox potential as measured in a steady-state, cell-free system
Authors:M K Burat  T Burat  W I Davis-Van Thienen  E J Davis
Affiliation:Department of Biochemistry, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46223 U.S.A.
Abstract:A cell-free system consisting of rat liver mitochondria, liver cytosol, lactate, and the substrates intrinsic to the malate-aspartate shuttle was reconstituted for studies of steady-state substrate fluxes and, more specifically, to evaluate further the mechanism of control of the intra- and extramitochondrial steady states of the free NAD+/NADH ratios. Soluble (F1) ATPase or 2,4-dinitrophenol (DNP) were added in varying amounts to alter substrate fluxes and the constant energy state of this 'open' metabolizing system. The steady-state redox segregation (1.36 log NAD+/NADH ratio out vs NAD+/NADH in the mitochondrial matrix) was maximally about 3 kcal, and declined together with the membrane potential (delta psi) and log ATP/ADP, which obtain on imposing an increasing energy load on the system. It is concluded that transmembrane movement of reducing equivalents is coupled to electron transfer through delta psi, mediated by the electrogenic exchange of glutamate and aspartate. When delta psi was high (near State 4), delta G redox was approximately the same as that generated without flux of reducing equivalents [E. J. Davis, J. Bremer, and K. E. Akerman (1980) J. Biol. Chem. 255, 2277-2283], suggesting that delta Gredox is in near thermodynamic equilibrium with delta psi. If the steady-state ATP/ADP ratio was altered with an energy load (F1-ATPase), delta Gredox decreased more steeply than delta psi (tetraphenyl phosphonium-sensitive electrode used to measure delta psi). At comparable ranges of ATP/ADP, both delta Gredox and delta psi decreased more steeply with uncoupler than with an external ADP-regenerating system.
Keywords:To whom correspondence should be addressed.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号