首页 | 本学科首页   官方微博 | 高级检索  
     


Flux balancing of light and nutrients in a biofilm photobioreactor for maximizing photosynthetic productivity
Authors:Thomas E. Murphy  Halil Berberoglu
Affiliation:Mechanical Engineering Dept., Cockrell School of Engineering, The University of Texas at Austin, Austin, TX
Abstract:This article reports a combined experimental and numerical study on the efficient operation of Porous Substrate Bioreactors. A comprehensive model integrating light transport, mass transport, and algal growth kinetics was used to understand the productivity of photosynthetic biofilms in response to delivery rates of photons and nutrients. The reactor under consideration was an evaporation driven Porous Substrate Bioreactor (PSBR) cultivating the cyanobacteria Anabaena variabilis as a biofilm on a porous substrate which delivers water and nutrients to the cells. In an unoptimized experimental case, this reactor was operated with a photosynthetic efficiency of 2.3%, competitive with conventional photobioreactors. Moreover, through a scaling analysis, the location at which the phosphate delivery rate decreased the growth rate to half of its uninhibited value was predicted as a function of microorganism and bioreactor properties. The numerical model along with the flux balancing techniques presented herein can serve as tools for designing and selecting operating parameters of biofilm based cultivation systems for maximum productivity. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:348–359, 2014
Keywords:biofilm photobioreactors  nutrient limitation  light transport  mass transport  productivity modeling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号