mEosFP-based green-to-red photoconvertible subcellular probes for plants |
| |
Authors: | Mathur Jaideep Radhamony Resmi Sinclair Alison M Donoso Ana Dunn Natalie Roach Elyse Radford Devon Mohaghegh P S Mohammad Logan David C Kokolic Ksenija Mathur Neeta |
| |
Affiliation: | Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada. jmathur@uoguelph.ca |
| |
Abstract: | Photoconvertible fluorescent proteins (FPs) are recent additions to the biologists' toolbox for understanding the living cell. Like green fluorescent protein (GFP), monomeric EosFP is bright green in color but is efficiently photoconverted into a red fluorescent form using a mild violet-blue excitation. Here, we report mEosFP-based probes that localize to the cytosol, plasma membrane invaginations, endosomes, prevacuolar vesicles, vacuoles, the endoplasmic reticulum, Golgi bodies, mitochondria, peroxisomes, and the two major cytoskeletal elements, filamentous actin and cortical microtubules. The mEosFP fusion proteins are smaller than GFP/red fluorescent protein-based probes and, as demonstrated here, provide several significant advantages for imaging of living plant cells. These include an ability to differentially color label a single cell or a group of cells in a developing organ, selectively highlight a region of a cell or a subpopulation of organelles and vesicles within a cell for tracking them, and understanding spatiotemporal aspects of interactions between similar as well as different organelles. In addition, mEosFP probes introduce a milder alternative to fluorescence recovery after photobleaching, whereby instead of photobleaching, photoconversion followed by recovery of green fluorescence can be used for estimating subcellular dynamics. Most importantly, the two fluorescent forms of mEosFP furnish bright internal controls during imaging experiments and are fully compatible with cyan fluorescent protein, GFP, yellow fluorescent protein, and red fluorescent protein fluorochromes for use in simultaneous, multicolor labeling schemes. Photoconvertible mEosFP-based subcellular probes promise to usher in a much higher degree of precision to live imaging of plant cells than has been possible so far using single-colored FPs. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|