首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitrogen Acquisition from Atmospheric NH3 by Lolium perenne
Authors:B Wollenweber  J A Raven
Abstract:Ammonia (NH3) is the third most abundant N species in the atmosphere and, due to various natural and anthropogenic sources, can reach high concentrations in some areas. While some plants show effects of toxicity, others are capable of using this N-form and grow well without any utilization of soil-N. Acquisition of atmospheric NH3 will affect the acid-base balance of the plants as absorption and dissolution causes an alkalinisation (production of OH?) and assimilation of NH3 results in an acidification (generation of H+). As there is only a limited capacity for biochemical disposal of excess H+ in shoots, pH regulation may involve H+/OH? extrusion into the media via roots and transport of (in)organic ions between roots and above-ground parts of the plant. Our aim therefore was to assess NH3 acquisition by Lolium perenne and to study the effects of gas phase NH3 on growth, acid-base balance and mineral composition of the plants. The experiments therefore included application of a range of 14NH3 to the shoots and of 15N as NO3?, NH4+ or NH4NO3 to the roots, from which the amount of gas phase NH3 acquisition could be quantified. Analysis of the mineral composition provided data for calculation of acid-base balance as well as for water use efficiencies of the plants. The results indicate that over the range of NH3 supplied, plants from all treatments could utilize gas-phase NH3 as demonstrated by increases in growth and in N and C use efficiencies. Plants receiving NO3? via their roots had a higher capacity to use gaseous NH3 than those growing with NH4+. NH3 assimilation in shoots reduced both the acid load with NH4+ nutrition and the alkaline load with NO3? supply to the roots. The results of the experiments are discussed in relation to possible acid-base regulation mechanisms of the whole plant.
Keywords:Ammonia  acid-base balance  Lolium perenne  pH regulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号