Abstract: | Rhodamine phalloidin (Rph) staining was used to examine the microfilament organization of the Xenopus laevis egg cortex during the early stages of fertilization. Unactivated eggs possessed a cytochalasin B (CR)-insensitive Rph-stained matrix that was reorganized upon egg activation and diminished in the presence of CB. Xenopus laevis sperm caused a temporary local increase in Rph staining on the Xenopus cortex. In CB-treated eggs, the local increases of cortical Rph staining later changed to a Rph-free area. These temporary local increases of cortical Rph staining were also observed when Notophthalmus viridescens sperm fertilized Xenopus and Rana pipiens eggs, and were followed by the appearance of concentric rings of stained and unstained areas. Our data suggest that Xenopus and Notophthalmus sperm have activities that can both organize and disrupt the cortical filamentous actin of the Xenopus egg. © 1993 Wiley-Liss, Inc. |