Blockade of ionotropic glutamate receptors produces neuronal apoptosis through the Bax-cytochrome C-caspase pathway: the causative role of Ca2+ deficiency |
| |
Authors: | Yoon W J Won S J Ryu B R Gwag B J |
| |
Affiliation: | Department of Neuroscience and Pharmacology, and Center for the Interventional Therapy of Stroke and Alzheimer's Disease, Ajou University School of Medicine, Suwon, Kyungkido, Korea. |
| |
Abstract: | Blockade of ionotropic glutamate receptors induces neuronal cell apoptosis. We investigated if mitochondria-mediated death signals would contribute to neuronal apoptosis following administration of glutamate antagonists. The administration of MK-801 and CNQX (MK-801/CNQX), the selective antagonists of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors, produced widespread neuronal death in neonatal rat brain and cortical cell cultures. MK-801/CNQX-induced neuronal apoptosis was prevented by zVAD-fmk, a broad inhibitor of caspases, but insensitive to inhibitors of calpain or cathepsin D. Activation of caspase-3 was observed within 6-12 h and sustained over 36 h after exposure to MK-801/CNQX, which cleaved PHF-1 tau, the substrate for caspase-3. Activation of caspase-3 was blocked by high K+ and mimicked by BAPTA-AM, a selective Ca2+ chelator. Reducing extracellular Ca2+, but not Na+, activated caspase-3, suggesting an essential role of Ca2+ deficiency in MK-801/CNQX-induced activation of caspases. Cortical neurons treated with MK-801/CNQX triggered activation of caspase-9, release of cytochrome c from mitochondria, and translocation of Bax into mitochondria. The present study suggests that blockade of ionotropic glutamate receptors causes caspase-3-mediated neuronal apoptosis due to Ca2+ deficiency that is coupled to the sequential mitochondrial death pathway. |
| |
Keywords: | apoptosis Bax calcium cytochrome c glutamate mitochondria |
本文献已被 PubMed 等数据库收录! |
|