首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Neurotoxic and neuroprotective effects of the glutamate transporter inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA) during physiological and ischemia-like conditions
Authors:Bonde C  Sarup A  Schousboe A  Gegelashvili G  Zimmer J  Noraberg J
Institution:Anatomy and Neurobiology, University of Southern Denmark, Winsl?wparken 21, DK-5000 Odense C, Denmark. cbonde@health.sdu.dk
Abstract:Maintenance of low extracellular glutamate (Glu](O)) preventing excitotoxic cell death requires fast removal of glutamate from the synaptic cleft. This clearance is mainly provided by high affinity sodium-dependent glutamate transporters. These transporters can, however, also be reversed and release glutamate to the extracellular space in situations with energy failure. In this study the cellular localisation of the glutamate transporters GLAST and GLT-1 in organotypic hippocampal slice cultures was studied by immunofluorescence confocal microscopy, under normal culture conditions, and after a simulated ischemic insult, achieved by oxygen and glucose deprivation (OGD). In accordance with in vivo findings, GLAST and GLT-1 were primarily expressed by astrocytes under normal culture conditions, but after OGD some damaged neurons also expressed GLAST and GLT-1. The potential damaging effect of inhibition of the glutamate transporters by DL-threo-beta-benzyloxyaspartate (DL-TBOA) was studied using cellular uptake of propidium iodide (PI) as a quantitative marker for the cell death. Addition of DL-TBOA for 48 h was found to induce significant cell death in all hippocampal regions, with EC(50) values ranging from 38 to 48 microM for the different hippocampal subregions. The cell death was prevented by addition of the glutamate receptor antagonists NBQX and MK-801, together with an otherwise saturating concentration of DL-TBOA (100 microM). Finally, the effect of inhibition of glutamate release, via reverse operating transporters during OGD, was investigated. Addition of a sub-toxic (10 microM) dose of DL-TBOA during OGD, but not during the subsequent 48 h recovery period, significantly reduced the OGD-induced PI uptake. It is concluded: (1) that the cellular expression of the glutamate transporters GLAST and GLT-1 in hippocampal slice cultures in general corresponds to the expression in vivo, (2) that inhibition of the glutamate transporters induces cell death in the slice cultures, and (3) that partial inhibition during simulation of ischemia by OGD protects against the induced PI uptake, most likely by blocking the reverse operating transporters otherwise triggered by the energy failure.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号