首页 | 本学科首页   官方微博 | 高级检索  
     


Glucose-induced cytosolic pH changes in beta-cells and insulin secretion are not causally related: studies in islets lacking the Na+/H+ exchangeR NHE1
Authors:Stiernet Patrick  Nenquin Myriam  Moulin Pierre  Jonas Jean-Christophe  Henquin Jean-Claude
Affiliation:Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, UCL 55.30, B-1200 Brussels, Belgium.
Abstract:The contribution of Na(+)/H(+) exchange (achieved by NHE proteins) to the regulation of beta-cell cytosolic pH(c), and the role of pH(c) changes in glucose-induced insulin secretion are disputed and were examined here. Using real-time PCR, we identified plasmalemmal NHE1 and intracellular NHE7 as the two most abundant NHE isoforms in mouse islets. We, therefore, compared insulin secretion, cytosolic free Ca(2+) ([Ca(2+)](c)) and pH(c) in islets from normal mice and mice bearing an inactivating mutation of NHE1 (Slc9A1-swe/swe). The experiments were performed in HCO(-)(3)/CO(2) or HEPES/NaOH buffers. PCR and functional approaches showed that NHE1 mutant islets do not express compensatory pH-regulating mechanisms. NHE1 played a greater role than HCO(-)(3)-dependent mechanisms in the correction of an acidification imposed by a pulse of NH(4)Cl. In contrast, basal pH(c) (in low glucose) and the alkalinization produced by high glucose were independent of NHE1. Dimethylamiloride, a classic blocker of Na(+)/H(+) exchange, did not affect pH(c) but increased insulin secretion in NHE1 mutant islets, indicating unspecific effects. In control islets, glucose similarly increased [Ca(2+)](c) and insulin secretion in HCO(-)(3) and HEPES buffer, although pH(c) changed in opposite directions. The amplification of insulin secretion that glucose produces when [Ca(2+)](c) is clamped at an elevated level by KCl was also unrelated to pH(c) and pH(c) changes. All effects of glucose on [Ca(2+)](c) and insulin secretion proved independent of NHE1. In conclusion, NHE1 protects beta-cells against strong acidification, but has no role in stimulus-secretion coupling. The changes in pH(c) produced by glucose involve HCO(-)(3)-dependent mechanisms. Variations in beta-cell pH(c) are not causally related to changes in insulin secretion.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号