首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitric oxide and ATP-sensitive potassium channels mediate lipopolysaccharide-induced depression of central respiratory-like activity in brain slices
Authors:Lu An-Dong  Wang Jia-Feng  Chen Yong-Hua  Hou Li-Li  Zhou Xu-Jiao  Bian Jin-Jun  Wang Ji-Jiang  Zhu Ke-ming
Institution:Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China.
Abstract:Infection may result in early abnormalities in respiratory movement, and the mechanism may involve central and peripheral factors. Peripheral mechanisms include lung injury and alterations in electrolytes and body temperature, but the central mechanisms remain unclear. In the present study, brainstem slices harvested from rats were stimulated with lipopolysaccharide at different doses. Central respiratory activities as demonstrated by electrophysiological activity of the hypoglossal rootlets were examined and the mechanisms were investigated by inhibiting nitric oxide synthase and ATP-sensitive potassium channels. As a result, 0.5 μg/ml lipopolysaccharide mainly caused inhibitory responses in both the frequency and the output intensity, while 5 μg/ml lipopolysaccharide caused an early frequency increase followed by delayed decreases in both the frequency and the output intensity. At both concentrations the inhibitory responses were fully reversed by inhibition of nitric oxide synthase with Nω-nitro-L-arginine methyl ester hydrochloride (20 μM), and by inhibition of ATP- sensitive potassium channels with glybenclamide (100 μM). These results show that direct lipopolysaccharide challenge altered central respiratory activity in dose- and time- related manners. Nitric oxide synthase and ATP-sensitive potassium channels may be involved in the respiratory changes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号