首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Electrospun composite scaffolds containing poly(octanediol-co-citrate) for cardiac tissue engineering
Authors:Prabhakaran Molamma P  Nair A Sreekumaran  Kai Dan  Ramakrishna Seeram
Institution:Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore 117576. nnimpp@nus.edu.sg
Abstract:A biocompatible and elastomeric nanofibrous scaffold is electrospun from a blend of poly(1,8-octanediol-co-citrate) POC] and poly(L-lactic acid) -co-poly-(3-caprolactone) PLCL] for application as a bioengineered patch for cardiac tissue engineering. The characterization of the scaffolds was carried out by Fourier transform infra red spectroscopy, scanning electron microscopy (SEM), and tensile measurement. The mechanical properties of the scaffolds are studied with regard to the percentage of POC incorporated with PLCL and the results of the study showed that the mechanical property and degradation behavior of the composites can be tuned with respect to the concentration of POC blended with PLCL. The composite scaffolds with POC: PLCL weight ratio of 40:60 POC/PLCL4060] was found to have a tensile strength of 1.04 ± 0.11 MPa and Young's Modulus of 0.51 ± 0.10 MPa, comparable to the native cardiac tissue. The proliferation of cardiac myoblast cells on the electrospun POC/PLCL scaffolds was found to increase from Days 2 to 8, with the increasing concentration of POC in the composite. The morphology and cytoskeletal observation of the cells also demonstrated the biocompatibility of the POC containing scaffolds. Electrospun POC/PLCL4060 nanofibers are promising elastomeric substrates that might provide the necessary mechanical cues to cardiac muscle cells for regeneration of the heart.
Keywords:poly(1  8‐octanediol‐co‐citrate)  elastomer  cardiac  tensile strength  myoblasts
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号