首页 | 本学科首页   官方微博 | 高级检索  
     

基于多源遥感数据的农业干旱监测模型构建及应用
引用本文:温庆志,孙鹏,张强,刘嘉敏,史培军. 基于多源遥感数据的农业干旱监测模型构建及应用[J]. 生态学报, 2019, 39(20): 7757-7770
作者姓名:温庆志  孙鹏  张强  刘嘉敏  史培军
作者单位:安徽师范大学地理与旅游学院, 芜湖 241002;安徽省水利部淮河水利委员会水利科学研究院, 水利水资源安徽省重点实验室, 蚌埠 233000,安徽师范大学地理与旅游学院, 芜湖 241002;安徽省水利部淮河水利委员会水利科学研究院, 水利水资源安徽省重点实验室, 蚌埠 233000;北京师范大学地表过程与资源生态国家重点实验室, 北京 100875,北京师范大学地表过程与资源生态国家重点实验室, 北京 100875;北京师范大学, 环境演变与自然灾害教育部重点实验室, 北京 100875,安徽师范大学地理与旅游学院, 芜湖 241002;安徽省水利部淮河水利委员会水利科学研究院, 水利水资源安徽省重点实验室, 蚌埠 233000,北京师范大学地表过程与资源生态国家重点实验室, 北京 100875;北京师范大学, 环境演变与自然灾害教育部重点实验室, 北京 100875
基金项目:国家自然科学基金项目(41601023);国家杰出青年科学基金项目(51425903);地表过程与资源生态国家重点实验室开放基金资助项目(2017-KF-04);安徽省自然科学基金(1808085QD117)
摘    要:干旱监测问题是干旱灾害模拟与预警及旱灾防灾减灾的关键。基于2001-2013年淮河流域40个气象站资料、28个土壤墒情站点和中分辨率成像光谱仪(MODIS)多源遥感数据,采用SEN趋势法和标准化降水蒸散指数(SPEI)等方法,综合了大气-植被-土壤相互作用等多元成因,构建了适用于淮河流域多源综合遥感干旱监测模型,探讨淮河流域干旱时空规律。研究表明:(1)基于多源数据构建综合干旱监测模型,利用土壤墒情和典型年份干旱监测对综合干旱监测模型适用性进行评价,通过了P < 0.01的显著性检验,构建的模型可综合反映出农业和气象干旱多源信息;(2)淮河流域干旱面积和干旱频率大都集中在4-5月和7-9月,9月份受旱面积最大。河南省是淮河流域受旱频率最高,其干旱面积占淮河流域多年平均干旱面积比重最大(38%),其次是安徽(22%),旱地受旱面积比重大于水田受旱面积比重;(3)淮河流域2、3和5月干旱有显著减弱趋势;而1、4和6月则有增强趋势。淮河流域小麦灌浆-成熟时期(4-6月)缺水对小麦粮食产量影响显著,综合淮河流域干旱趋势变化,需强化淮河流域4月份小麦的干旱监测与旱灾预警。

关 键 词:多源数据  农业干旱  气象干旱  综合干旱监测模型  淮河流域
收稿时间:2017-11-20
修稿时间:2019-05-16

An integrated agricultural drought monitoring model based on multi-source remote sensing data: model development and application
WEN Qingzhi,SUN Peng,ZHANG Qing,LIU Jiamin and SHI Peijun. An integrated agricultural drought monitoring model based on multi-source remote sensing data: model development and application[J]. Acta Ecologica Sinica, 2019, 39(20): 7757-7770
Authors:WEN Qingzhi  SUN Peng  ZHANG Qing  LIU Jiamin  SHI Peijun
Affiliation:School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China;Key Laboratory of Water Conservancy and Water Resources of Anhui Province, Water Resources Research Institute of Anhui Province and Huaihe River China, Bengbu 233000, China,School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China;Key Laboratory of Water Conservancy and Water Resources of Anhui Province, Water Resources Research Institute of Anhui Province and Huaihe River China, Bengbu 233000, China;State Key Laboratory of Surface Process and Resource Ecology, Beijing Normal University, Beijing 100875, China,State Key Laboratory of Surface Process and Resource Ecology, Beijing Normal University, Beijing 100875, China;Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China,School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China;Key Laboratory of Water Conservancy and Water Resources of Anhui Province, Water Resources Research Institute of Anhui Province and Huaihe River China, Bengbu 233000, China and State Key Laboratory of Surface Process and Resource Ecology, Beijing Normal University, Beijing 100875, China;Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China
Abstract:Drought monitoring is crucial for the early warning of drought hazards. In this study, an attempt to develop an Integrated Remote Sensing Drought Monitoring Index (IRSDI) was made, based on multi-source remote sensing data, with the aim of investigating drought conditions across the Huai River basin in both space and time. The IRSDI relied on:meteorological data recorded from 2003 to 2013 at 40 stations, soil moisture data recorded at 16 stations, Moderate Resolution Imaging Spectroradiometer (MODIS) data obtained by linear trend detection, and on the Standardized Precipitation Evapotranspiration Index (SPEI). The results of this study indicate that:(1) the proposed IRSDI is able to describe and monitor drought conditions well in both space and time; (2) droughts and high drought frequency occur in the periods April-May and July-September. In particular, September is the month during which the largest area is dominated by droughts. In particular, droughts affect Henan province, which accounts for 38% of the total drainage area of the Huai River basin, followed by Anhui province, which accounts for 22% of the total drainage area of the Huai River basin; (3) droughts tend to decrease during February, March and May, whereas they increase during January, April and June. Wheat grouting and ripening occur in the period from April to June. Thus, droughts in these months can seriously affect wheat production, and a more careful allocation of water resources and irrigation management should be performed during this period. Nevertheless, spring droughts and autumn-winter droughts should receive proper attention as well, in order to manage and reduce drought-induced losses.
Keywords:Multi-source remote sensing data  agricultural drought  meteorological drought  integrated drought monitoring model  Huai River basin
点击此处可从《生态学报》浏览原始摘要信息
点击此处可从《生态学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号