首页 | 本学科首页   官方微博 | 高级检索  
     

应用自组织映射方法的北京市2005-2013年土地利用时空演变分析
引用本文:齐建超,刘慧平,伊尧国. 应用自组织映射方法的北京市2005-2013年土地利用时空演变分析[J]. 生态学报, 2017, 37(19): 6346-6354
作者姓名:齐建超  刘慧平  伊尧国
作者单位:遥感科学国家重点实验室, 北京 100875;环境遥感与数字城市北京市重点实验室, 北京 100875;北京师范大学地理学与遥感科学学院, 北京 100875,遥感科学国家重点实验室, 北京 100875;环境遥感与数字城市北京市重点实验室, 北京 100875;北京师范大学地理学与遥感科学学院, 北京 100875,遥感科学国家重点实验室, 北京 100875;环境遥感与数字城市北京市重点实验室, 北京 100875;北京师范大学地理学与遥感科学学院, 北京 100875;天津城建大学地质与测绘学院, 天津 300384
基金项目:中央高校基本科研业务费专项资金资助项目;北京市共建项目专项资助;国家自然科学基金项目(40671127);国土资源部公益性行为科研专项(201411015-03)。
摘    要:时间序列土地利用时空演变规律分析是当前的研究热点之一,通过应用自组织映射神经网络方法进行多时间序列土地利用变化时空一体化表达与演变规律分析,探索区域土地利用变化模式。基于北京市2005、2007、2009、2011、2013年5期土地利用遥感分类数据,构建自组织映射神经网络并利用其聚类和降维可视化功能对5个年份的土地利用数据同时进行训练输出,发现建设用地、耕地、林地、牧草地、园地的聚集模式,并通过对输出神经元进行二次聚类以及土地利用变化轨迹分析,获得北京市郊区5个监测时相土地利用变化的时空演变特征。结果揭示出北京市郊区2005-2013年土地利用变化具有明显的耕地型向建设用地型发展的平原区演变特征,以及向林地型发展的山区演变特征,且各区的发展具有时间上的顺序性;总体上形成6类土地利用演变轨迹。

关 键 词:自组织映射(SOM)  土地利用变化  多时间序列  时空分析  轨迹分析
收稿时间:2016-07-22

Land use spatial-temporal evolution analysis using a self-organizing map in Beijing, 2005-2013
QI Jianchao,LIU Huiping and YI Yaoguo. Land use spatial-temporal evolution analysis using a self-organizing map in Beijing, 2005-2013[J]. Acta Ecologica Sinica, 2017, 37(19): 6346-6354
Authors:QI Jianchao  LIU Huiping  YI Yaoguo
Affiliation:State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China;Beijing Key Laboratory of Environmental Remote Sensing and Digital City, Beijing Normal University, Beijing 100875, China;School of Geography and RS, Beijing Normal University, Beijing 100875, China,State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China;Beijing Key Laboratory of Environmental Remote Sensing and Digital City, Beijing Normal University, Beijing 100875, China;School of Geography and RS, Beijing Normal University, Beijing 100875, China and State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China;Beijing Key Laboratory of Environmental Remote Sensing and Digital City, Beijing Normal University, Beijing 100875, China;School of Geography and RS, Beijing Normal University, Beijing 100875, China;School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China
Abstract:Multiple time series land using spatial-temporal evolution analysis is an important research area. In this study, we investigated the spatial-temporal integrated expression of multiple time series land use change. A self-organizing map (SOM) neural network was used to explore regional land use change modes and to analyze what has driven these changes. Remote sensing data for five land use classification data periods (2005, 2007, 2009, 2011, and 2013) for Beijing were used to train the network, and the outputs identified the aggregation modes for building land, farmland, forest land, grassland, and gardens by using the clustering, dimension-reducing, and visual functions of the SOM. Then we conducted second-step clustering to produce the neuron and build the land use change trajectories that are needed to analyze the spatial-temporal features of Beijing suburban land use changes during the five monitoring periods. The results revealed that there were two land use changes in the Beijing suburbs between 2005 and 2013. One was the development of buildings on farmland located on the plains and the other was the development of forest land in mountainous areas. Furthermore, development in each district had its own time sequences. This meant that we eventually obtained six land use change trajectories in total.
Keywords:self-organizing map(SOM)  land use change  multiple time series  spatial-temporal analysis  trajectory analysis
点击此处可从《生态学报》浏览原始摘要信息
点击此处可从《生态学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号