首页 | 本学科首页   官方微博 | 高级检索  
     


An electrical biosensor for the detection of circulating tumor cells
Authors:Chung Yao-Kuang  Reboud Julien  Lee Kok Chuan  Lim Hui Min  Lim Pei Yi  Wang Karen Yanping  Tang Kum Cheong  Ji HongMiao  Chen Yu
Affiliation:Institute of Microelectronics, Agency for Science, Technology and Research, 11 Science Park Road, Singapore Science Park II, Singapore 117685, Singapore. ykchung@ms.mainz
Abstract:In this report, we demonstrate a semi-integrated electrical biosensor for the detection of rare circulating tumor cells (CTCs) in blood. The sample was first enriched through a combination of immunomagnetic isolation and size filtration. The integration of both methods provided a high enrichment performance with a recovery rate above 70%, even for very low numbers of cancer cells present in the original sample (10 spiked MCF7 cells in 0.5 mL of blood). In the same system, the sample was then transferred to a microchip for further magnetic concentration, followed by immunochemical trapping and electronic detection by impedance spectroscopy. Three levels of spiked CTC number (30±2, 124±29, 273±23) in 10 μL of filtered blood sample were distinguished by monitoring the impedance change of the microelectrode array (MEA). The integration of different functions in a single system provided a methodology to process milliliter-sized blood samples at the macroscale and interface with the microdimensions of a highly sensitive electronic detector. The results showed that the whole system was able to detect different levels of spiked cancer cells without the use of time- and cost-intensive fluorescence labeling and image analysis. This has the potential to provide clinicians with a standalone system to monitor changes in CTC numbers throughout therapy conveniently and frequently for efficient cancer treatments.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号