首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Multifunctional Role of Ectomycorrhizal Associations in Forest Ecosystem Processes
Authors:Zahoor Ahmad Itoo  Zaffar Ahmad Reshi
Institution:1. Biological Invasions Research Lab, Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190006, India
Abstract:Belowground biological interactions that occur among plant roots, microorganisms and animals are dynamic and substantially influence ecosystem processes. Among these interactions, the ectomycorrhizal (ECM) symbiosis is remarkable but unfortunately these associations have mainly been considered within the rather narrow perspective of their effects on the uptake of dissolved mineral nutrients by individual plants. More recent research has placed emphasis on a wider, multifunctional perspective, including the effects of ectomycorrhizal symbiosis on plant and microbial communities, and on ecosystem processes. This includes mobilization of N and P from organic polymers, release of nutrients from mineral particles or rock surfaces via weathering, effects on carbon cycling, interactions with mycoheterotrophic plants, mediation of plant responses to stress factors such as drought, soil acidification, toxic metals, and plant pathogens, rehabilitation and regeneration of degraded forest ecosystems, as well as a range of possible interactions with groups of other soil microorganisms. Ectomycorrhizas are almost invariably characterized by a Hartig net composed of highly branched hyphae which entirely surround the outer root cortical cells. The Hartig net is the place of massive bidirectional exchanges of nutrients between the host and the fungus. Through these branched hyphae ectomycorrhizal fungi connect their plant hosts to the heterogeneously distributed nutrients required for their growth, enabling the flow of energy-rich compounds required for nutrient mobilization whilst simultaneously providing conduits for the translocation of mobilized products back to their hosts. In addition to increasing the nutrient absorptive surface area of their host plant root systems, the extraradical mycelium of ectomycorrhizal fungi provides a direct pathway for translocation of photosynthetically derived carbon from their hosts to microsites in the soil and a large surface area for interaction with other soil micro-organisms. The detailed functioning and regulation of these mycorrhizosphere processes is still poorly understood and needs detailed molecular approach to study these mycorrhizosphere processes but recent progress in ectomycorrhizal associations is reviewed and potential benefits of improved understanding of mycorrhizosphere interactions are discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号