首页 | 本学科首页   官方微博 | 高级检索  
   检索      


DNA copy number evolution in Drosophila cell lines
Authors:Hangnoh Lee  C Joel McManus  Dong-Yeon Cho  Matthew Eaton  Fioranna Renda  Maria Patrizia Somma  Lucy Cherbas  Gemma May  Sara Powell  Dayu Zhang  Lijun Zhan  Alissa Resch  Justen Andrews  Susan E Celniker  Peter Cherbas  Teresa M Przytycka  Maurizio Gatti  Brian Oliver  Brenton Graveley  David MacAlpine
Abstract:

Background

Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles.

Results

Our work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence indicating that copy number changes were due to selection during tissue culture. First, we found that copy numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways, consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific, we identified some copy number changes shared by many of the independent cell lines. These included dramatic recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells, and of bantam, an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines, there was strong evidence that they supported a common phenotypic outcome. For example, we found that proto-oncogenes were over-represented in one cell line (S2-DRSC), whereas tumor suppressor genes were under-represented in another (Kc167).

Conclusion

Our study illustrates how genome structure changes may contribute to selection of cell lines in vitro. This has implications for other cell-level natural selection progressions, including tumorigenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/gb-2014-15-8-r70) contains supplementary material, which is available to authorized users.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号