首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Target site cleavage by the monomeric restriction enzyme BcnI requires translocation to a random DNA sequence and a switch in enzyme orientation
Authors:Sasnauskas Giedrius  Kostiuk Georgij  Tamulaitis Gintautas  Siksnys Virginijus
Institution:Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
Abstract:Endonucleases that generate double-strand breaks in DNA often possess two identical subunits related by rotational symmetry, arranged so that the active sites from each subunit act on opposite DNA strands. In contrast to many endonucleases, Type IIP restriction enzyme BcnI, which recognizes the pseudopalindromic sequence 5'-CCSGG-3' (where S stands for C or G) and cuts both DNA strands after the second C, is a monomer and possesses a single catalytic center. We show here that to generate a double-strand break BcnI nicks one DNA strand, switches its orientation on DNA to match the polarity of the second strand and then cuts the phosphodiester bond on the second DNA strand. Surprisingly, we find that an enzyme flip required for the second DNA strand cleavage occurs without an excursion into bulk solution, as the same BcnI molecule acts processively on both DNA strands. We provide evidence that after cleavage of the first DNA strand, BcnI remains associated with the nicked intermediate and relocates to the opposite strand by a short range diffusive hopping on DNA.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号