首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Additive genetic variance within populations derived by single-seed descent and pod-bulk descent
Authors:W C Wells  G C Weiser
Institution:(1) Hawaiian Sugar Planters' Association, P.O. Box 1057, 96701-1057 Aiea, HI, USA;(2) Edisto Research and Education Center, Clemson University, 29817 Blackville, SC, USA
Abstract:Summary Breeders of self-pollinated legumes commonly use single-seed descent (SSD) or pod-bulk descent (PBD) to produce segregating populations of highly inbred individuals. We presented equations for the expected value of the additive genetic variance within populations derived by SSD (E(V A)SSD) and PBD (E(V A)PBD) in terms of the initial population size (N 0), the number of seed harvested per pod (M), the probability of survival of an individual (theta), and the generation at which the population is evaluated (S t). Differences between (E(V A)SSD) and (E(V A)PBD) are due to differences in the expected amount of random drift which occurs with the two methods after the S 0 generation. With both methods, random drift occurs when progeny are sampled from heterozygous parents. An additional component of random drift occurs when sampled progeny fail to survive during SSD, or when sampling occurs amoung families during PBD. For values of N 0, M, theta, and S t that are typical of soybean (Glycine max (L.) Merr.) breeding programs, (E(V A)SSD) will be greater than (E(V A)PBD). The ratio of (E(V A)SSD) to (E(V A)PBD) will: (1) increase as M and theta increase; (2) approach a value of 1.00 as N 0 increases; and (3) be a curvilinear function of S t. Plant breeders should compare SSD and PBD based upon values of (E(V A)SSD) and (E(V A)PBD) and the expected cost of carrying out the two methods.Contribution No. 2910 of the South Carolina Agricultural Experiment Station, Clemson University
Keywords:Soybeans  Breeding methods  Bulk populations  Random drift  Quantitative genetics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号