首页 | 本学科首页   官方微博 | 高级检索  
     


ADP Protects Cardiac Mitochondria under Severe Oxidative Stress
Authors:Niina Sokolova  Shi Pan  Sarah Provazza  Gisela Beutner  Marko Vendelin  Rikke Birkedal  Shey-Shing Sheu
Affiliation:1. Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia.; 2. Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, United States of America.; 3. Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America .; Duke University Medical Center, United States of America,
Abstract:ADP is not only a key substrate for ATP generation, but also a potent inhibitor of mitochondrial permeability transition pore (mPTP). In this study, we assessed how oxidative stress affects the potency of ADP as an mPTP inhibitor and whether its reduction of reactive oxygen species (ROS) production might be involved. We determined quantitatively the effects of ADP on mitochondrial Ca2+ retention capacity (CRC) until the induction of mPTP in normal and stressed isolated cardiac mitochondria. We used two models of chronic oxidative stress (old and diabetic mice) and two models of acute oxidative stress (ischemia reperfusion (IR) and tert-butyl hydroperoxide (t-BH)). In control mitochondria, the CRC was 344 ± 32 nmol/mg protein. 500 μmol/L ADP increased CRC to 774 ± 65 nmol/mg protein. This effect of ADP seemed to relate to its concentration as 50 μmol/L had a significantly smaller effect. Also, oligomycin, which inhibits the conversion of ADP to ATP by F0F1ATPase, significantly increased the effect of 50 μmol/L ADP. Chronic oxidative stress did not affect CRC or the effect of 500 μmol/L ADP. After IR or t-BH exposure, CRC was drastically reduced to 1 ± 0.2 and 32 ± 4 nmol/mg protein, respectively. Surprisingly, ADP increased the CRC to 447 ± 105 and 514 ± 103 nmol/mg protein in IR and t-BH, respectively. Thus, it increased CRC by the same amount as in control. In control mitochondria, ADP decreased both substrate and Ca2+-induced increase of ROS. However, in t-BH mitochondria the effect of ADP on ROS was relatively small. We conclude that ADP potently restores CRC capacity in severely stressed mitochondria. This effect is most likely not related to a reduction in ROS production. As the effect of ADP relates to its concentration, increased ADP as occurs in the pathophysiological situation may protect mitochondrial integrity and function.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号