首页 | 本学科首页   官方微博 | 高级检索  
     


PombeX: Robust Cell Segmentation for Fission Yeast Transillumination Images
Authors:Jyh-Ying Peng  Yen-Jen Chen  Marc D. Green  Sarah A. Sabatinos  Susan L. Forsburg  Chun-Nan Hsu
Abstract:Schizosaccharomyces pombe shares many genes and proteins with humans and is a good model for chromosome behavior and DNA dynamics, which can be analyzed by visualizing the behavior of fluorescently tagged proteins in vivo. Performing a genome-wide screen for changes in such proteins requires developing methods that automate analysis of a large amount of images, the first step of which requires robust segmentation of the cell. We developed a segmentation system, PombeX, that can segment cells from transmitted illumination images with focus gradient and varying contrast. Corrections for focus gradient are applied to the image to aid in accurate detection of cell membrane and cytoplasm pixels, which is used to generate initial contours for cells. Gradient vector flow snake evolution is used to obtain the final cell contours. Finally, a machine learning-based validation of cell contours removes most incorrect or spurious contours. Quantitative evaluations show overall good segmentation performance on a large set of images, regardless of differences in image quality, lighting condition, focus condition and phenotypic profile. Comparisons with recent related methods for yeast cells show that PombeX outperforms current methods, both in terms of segmentation accuracy and computational speed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号