首页 | 本学科首页   官方微博 | 高级检索  
     


Proteomic Analysis of Detergent-resistant Membrane Microdomains in Trophozoite Blood Stage of the Human Malaria Parasite Plasmodium falciparum
Authors:Xue Yan Yam  Cecilia Birago  Federica Fratini  Francesco Di Girolamo  Carla Raggi  Massimo Sargiacomo  Angela Bachi  Laurence Berry  Gamou Fall  Chiara Currà   Elisabetta Pizzi  Catherine Braun Breton  Marta Ponzi
Affiliation:From the ‡University Montpellier II, CNRS UMR 5235, 34095 Montpellier, Cedex 5, France; ;‖Dipartimento di Malattie Infettive Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy; ;‡‡Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy; ;§§Dibit-San Raffaele Scientific Institute, 20123 Milano, Italy
Abstract:Intracellular pathogens contribute to a significant proportion of infectious diseases worldwide. The successful strategy of evading the immune system by hiding inside host cells is common to all the microorganism classes, which exploit membrane microdomains, enriched in cholesterol and sphingolipids, to invade and colonize the host cell. These assemblies, with distinct biochemical properties, can be isolated by means of flotation in sucrose density gradient centrifugation because they are insoluble in nonionic detergents at low temperature. We analyzed the protein and lipid contents of detergent-resistant membranes from erythrocytes infected by Plasmodium falciparum, the most deadly human malaria parasite. Proteins associated with membrane microdomains of trophic parasite blood stages (trophozoites) include an abundance of chaperones, molecules involved in vesicular trafficking, and enzymes implicated in host hemoglobin degradation. About 60% of the identified proteins contain a predicted localization signal suggesting a role of membrane microdomains in protein sorting/trafficking.To validate our proteomic data, we raised antibodies against six Plasmodium proteins not characterized previously. All the selected candidates were recovered in floating low-density fractions after density gradient centrifugation. The analyzed proteins localized either to internal organelles, such as the mitochondrion and the endoplasmic reticulum, or to exported membrane structures, the parasitophorous vacuole membrane and Maurer''s clefts, implicated in targeting parasite proteins to the host erythrocyte cytosol or surface. The relative abundance of cholesterol and phospholipid species varies in gradient fractions containing detergent-resistant membranes, suggesting heterogeneity in the lipid composition of the isolated microdomain population. This study is the first report showing the presence of cholesterol-rich microdomains with distinct properties and subcellular localization in trophic stages of Plasmodium falciparum.Plasmodium falciparum, the most deadly agent of human malaria, caused around 216 million infections and 655,000 deaths in 2010. The complex parasite life cycle involves the development in a mosquito vector of the Anopheles genus and eventual migration to a human host. In this host, asymptomatic multiplication in the liver cells is followed by parasite release into the bloodstream and erythrocyte invasion. Inside the erythrocytes, parasites grow (trophozoite stage) and multiply asexually (schizont stage), developing into highly specialized invasive forms (merozoites). A fraction of parasites differentiate into gametocytes, the gamete precursors necessary to complete the transmission cycle. Parasite blood stages, responsible for malaria pathogenesis and transmission, actively remodel the host erythrocyte, generating novel membrane compartments to sustain the export and sorting of proteins to the host cell cytosol, membrane skeleton, and plasma membrane. The parasitophorous vacuole membrane (PVM),1 which surrounds the parasite throughout the erythrocytic cycle, is the site where exported proteins are translocated into the erythrocyte cytosol (1, 2). Membrane-bound structures of parasite origin, the so-called Maurer''s clefts (MCs) (3, 4), form functionally independent compartments at the red blood cell (RBC) periphery and mediate the sorting/assembly of virulence factors en route to the host cell surface (5). In addition, populations of different vesicles (25 and 80 nm) were identified in the RBC cytosol, suggesting the presence of vesicular mediated trafficking for the delivery of cargo to different destinations (6).Membranes are important sites for cellular signaling events, and many proteins with therapeutic potential localize in these cellular compartments (7, 8). Membrane microdomains enriched in sphingolipids and cholesterol, also referred to as lipid rafts, have been extensively studied in different cell types and gained particular interest for their roles in infection and pathogenesis (8, 9). These assemblies are small and dynamic and can be stabilized to form larger microdomains implicated in a wide range of fundamental cellular processes, which vary depending on cell type (10). Sphingolipids exhibit strong lateral cohesion, generating tightly packed regions in the membrane bilayer, and cholesterol acts as a spacer present in both membrane leaflets generating stable, liquid-ordered phase domains in the membrane bilayer (11). Distinct biochemical properties render these membrane assemblies insoluble in nonionic detergents at low temperature, allowing for their enrichment as detergent-resistant membranes (DRMs). Proteins with DRM-raft affinity include glycosylphosphatidyl inositol (GPI)-anchored proteins and acylated, myristoylated, and palmitoylated proteins (11). DRM rafts also restrict free diffusion of membrane proteins, thereby directing the trafficking of proteins and lipids to and from cellular compartments. Because of their endocytic and receptor clustering capacity, an increasing number of pathogens, including Plasmodium falciparum, utilize them when interacting with their target cells for invasion (9, 12).Even though cholesterol-rich membrane microdomains are implicated in fundamental processes in the parasite life cycle, Plasmodium is unable to synthesize sterols and depends entirely on hosts for its cholesterol supply. During merozoite invasion, lipid and protein components of the erythrocyte rafts are selectively recruited and incorporated into the nascent PVM (13, 14). Plasmodium liver stages utilize cholesterol internalized by low-density lipoprotein and synthesized by hepatocytes (15).To shed light on the organization and dynamics of these assemblies during parasite development inside the infected cell, we identified and validated the DRM-raft proteome of the P. falciparum trophozoite/early schizont. Detected proteins only partially overlap with DRM components of the P. falciparum late schizonts (16, 17) or the mixed blood stages of the rodent malaria agent P. berghei (18). Immunolocalization of selected DRM-associated proteins indicated that these assemblies may reside in both exported compartments (PVM, MCs) and intracellular membranes/organelles. The analysis of DRM lipids suggested that distinct microdomains exist in the infected erythrocyte that differ in their relative abundance of cholesterol and phospholipids.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号