首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transient release of acetylcholine from Torpedo synaptosomes in response to prolonged depolarization
Authors:F M Meunier  S Birman
Abstract:The release of ACh (acetylcholine) from purely cholinergic Torpedo synaptosomes was monitored continuously using a chemiluminescent assay. A maintained depolarization by high KCl in the presence of Ca2+ triggered only a transient ACh release. It was shown that neither depletion of the transmitter store nor an inhibition of the release mechanism itself were involved in this phasic response. The termination of release was probably caused by inactivation of voltage-dependent Ca2+ entry and rapid removal of intraterminal Ca2+ by a (Na+)0 dependent mechanism. It was found that exposure of the synaptosomes for a short period to low Ca2+-high K+ solutions greatly reduced the responses to Ca2+ reintroduction, as compared to the control release obtained when high K+ was applied in the presence of normal Ca2+. The response to Ca2+ reintroduction was measured following various times of preincubation with high K+ and low Ca2+; thus, an estimate of the time course of the inactivation of Ca2+ permeability during a depolarization could be made. A two component exponential kinetic was observed, with a rapid (tau = 3.6 s) and a slow phase (tau = 77 s). This inactivation was more pronounced when a higher KCl concentration was used to induce a greater depolarization. The presence of EGTA during the preincubation with high KCl greatly increased the response provoked by Ca2+ reintroduction, whereas increases in Ca2+ during the preincubation period caused proportional reduction in the subsequent response to Ca2+ reintroduction, indicating that the Ca2+ influx itself was involved in the inactivation process.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号